
Audio Toolbox™
Getting Started Guide

R2021b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Audio Toolbox™ Getting Started Guide
© COPYRIGHT 2016 - 2021 by MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2016 Online only New for Version 1.0 (Release 2016a)
September 2016 Online only Revised for Version 1.1 (Release 2016b)
March 2017 Online only Revised for Version 1.2 (Release 2017a)
September 2017 Online only Revised for Version 1.3 (Release 2017b)
March 2018 Online only Revised for Version 1.4 (Release 2018a)
September 2018 Online only Revised for Version 1.5 (Release 2018b)
March 2019 Online only Revised for Version 2.0 (Release 2019a)
September 2019 Online only Revised for Version 2.1 (Release 2019b)
March 2020 Online only Revised for Version 2.2 (Release 2020a)
September 2020 Online only Revised for Version 2.3 (Release 2020b)
March 2021 Online only Revised for Version 3.0 (Release 2021a)
September 2021 Online only Revised for Version 3.1 (Release 2021b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Introduction
1

Audio Toolbox Product Description . 1-2

Acknowledgements . 1-3

Audio IO
2

Audio Input and Audio Output . 2-2

Audio Plugins
3

Design an Audio Plugin . 3-2

Deep Learning
4

Classify Sound Using Deep Learning . 4-2

Intro to Audio Deep Learning
5

Introduction to Deep Learning for Audio Applications 5-2
Access and Create Data . 5-2
Preprocess and Explore Data . 5-3
Example Applications and Workflows . 5-3

iii

Contents

Stream Audio
6

Process and Analyze Streaming Audio . 6-2

Export a MATLAB Plugin to a DAW
7

Export a MATLAB Plugin to a DAW . 7-2
Plugin Development Workflow . 7-2
Considerations When Generating Audio Plugins . 7-2
How Audio Plugins Interact with the DAW Environment 7-2

Audio I/O: Buffering, Latency, and Throughput
8

Audio I/O: Buffering, Latency, and Throughput . 8-2
Input Audio Stream . 8-2
Output Audio Stream . 8-3
Synchronize Audio to and from Device . 8-3
Terminology and Techniques to Optimize Performance 8-4

What Are DAWs, Audio Plugins, and MIDI Controllers?
9

What Are DAWs, Audio Plugins, and MIDI Controllers? 9-2
Digital Audio Workstation (DAW) . 9-2
Audio Plugins . 9-2
Musical Instrument Digital Interface (MIDI) . 9-2

Real-Time Audio in MATLAB
10

Real-Time Audio in MATLAB . 10-2
Create a Development Test Bench . 10-2
Add Tunability . 10-6
Quick Start Examples . 10-7

iv Contents

Audio Plugins in MATLAB
11

Audio Plugins in MATLAB . 11-2
Role of Audio Plugins in Audio Toolbox . 11-2
Defining Audio Plugins in the MATLAB Environment 11-2
Design a Basic Plugin . 11-3
Design a System Object Plugin . 11-8
Quick Start Basic Plugin . 11-9
Quick Start Basic Source Plugin . 11-10
Quick Start System Object Plugin . 11-11
Quick Start System Object Source Plugin . 11-12
Audio Toolbox Extended Terminology . 11-14

Real-Time Audio in Simulink
12

Real-Time Audio in Simulink . 12-2
Create Model Using Audio Toolbox Simulink Model Templates 12-2
Add Audio Toolbox Blocks to Model . 12-3
Block Characteristics . 12-5

Convert MATLAB Code to an Audio Plugin
13

Convert MATLAB Code to an Audio Plugin . 13-2
Inspect Existing MATLAB Script . 13-2
Convert MATLAB Script to Plugin Class . 13-3

Convert Audio Plugin System Objects to Simulink Blocks
14

Convert Audio Plugin System Objects to Simulink Blocks 14-2
Open the Basic Audio Player Template in Simulink 14-2
Import Audio Plugin Functionality . 14-2
Create an Audio Plugin Block Interface . 14-3
Run the Model . 14-5

v

Host External Audio Plugins
15

Host External Audio Plugins . 15-2
Property Display Mode (Default) . 15-3
Parameter Display Mode . 15-7
Graphical Interaction . 15-12
Heuristic Mapping . 15-12

vi Contents

Introduction

• “Audio Toolbox Product Description” on page 1-2
• “Acknowledgements” on page 1-3

1

Audio Toolbox Product Description
Design and analyze speech, acoustic, and audio processing systems

Audio Toolbox provides tools for audio processing, speech analysis, and acoustic measurement. It
includes algorithms for processing audio signals such as equalization and time stretching, estimating
acoustic signal metrics such as loudness and sharpness, and extracting audio features such as MFCC
and pitch. It also provides advanced machine learning models, including i-vectors, and pretrained
deep learning networks, including VGGish and CREPE. Toolbox apps support live algorithm testing,
impulse response measurement, and signal labeling. The toolbox provides streaming interfaces to
ASIO™, CoreAudio, and other sound cards; MIDI devices; and tools for generating and hosting VST
and Audio Units plugins.

With Audio Toolbox you can import, label, and augment audio data sets, as well as extract features to
train machine learning and deep learning models. The pre-trained models provided can be applied to
audio recordings for high-level semantic analysis.

You can prototype audio processing algorithms in real time or run custom acoustic measurements by
streaming low-latency audio to and from sound cards. You can validate your algorithm by turning it
into an audio plugin to run in external host applications such as Digital Audio Workstations. Plugin
hosting lets you use external audio plugins as regular MATLAB® objects.

1 Introduction

1-2

Acknowledgements
VST is a trademark and software of Steinberg Media Technologies GmbH.

ASIO is a trademark and software of Steinberg Media Technologies GmbH.

 Acknowledgements

1-3

Audio IO

2

Audio Input and Audio Output
This example shows how to read audio from a file and write audio to your speakers.

Read and Write Entire Audio Files

To read an entire audio file into the workspace and then write the entire audio signal to your
speakers, use the audioread and soundsc functions. Call audioread with a file name to read the
entire audio file and the sample rate of the audio. Call soundsc with the audio data and sample rate
to play the audio to your default speakers.

[audioData,fs] = audioread("SpeechDFT-16-8-mono-5secs.wav");
soundsc(audioData,fs)

Read and Write Audio Files Frame-by-Frame

To read audio frame-by-frame into the workspace and then write audio frame-by-frame to your
speakers, use the dsp.AudioFileReader and audioDeviceWriter functions.

Create a dsp.AudioFileReader object to read audio from a file frame-by-frame. The audio file
reader saves the sample rate of the audio file to the SampleRate property.

fileReader = dsp.AudioFileReader("Filename","SpeechDFT-16-8-mono-5secs.wav")

fileReader =
 dsp.AudioFileReader with properties:

 Filename: 'B:\matlab\toolbox\audio\samples\SpeechDFT-16-8-mono-5secs.wav'
 PlayCount: 1
 SamplesPerFrame: 1024
 OutputDataType: 'double'
 FilenameIsTunableInCodegen: 0
 SampleRate: 8000
 ReadRange: [1 Inf]

Create an audioDeviceWriter object to write audio to your speakers. Set the sample rate of the
audioDeviceWriter object to the sample rate of the audio file.

deviceWriter = audioDeviceWriter("SampleRate",fileReader.SampleRate)

deviceWriter =
 audioDeviceWriter with properties:

 Driver: 'DirectSound'
 Device: 'Default'
 SampleRate: 8000

 Show all properties

In a loop, read from the file and write to the device. While the loop runs, audio is played to your
default audio device.

while ~isDone(fileReader)

 % Read one frame of audio data from the file.

2 Audio IO

2-2

 audioData = fileReader();

 % Write one frame of audio data to your speakers.
 deviceWriter(audioData);

end

As a best practice, release the file and audio device when you are done.

release(fileReader)
release(deviceWriter)

To learn how to implement other audio I/O configurations, such as reading from a microphone or
writing to a speaker, see “Real-Time Audio in MATLAB” on page 10-2.

See Also
audioDeviceReader | audioDeviceWriter | audioPlayerRecorder | dsp.AudioFileWriter |
dsp.AudioFileReader | asiosettings | getAudioDevices

More About
• “Process and Analyze Streaming Audio” on page 6-2
• “Real-Time Audio in Simulink” on page 12-2
• “Audio I/O: Buffering, Latency, and Throughput” on page 8-2

 Audio Input and Audio Output

2-3

Audio Plugins

3

Design an Audio Plugin
An audio plugin encapsulates an audio processing algorithm and enables you to tune the parameters
of the algorithm while streaming audio.

Define an Audio Plugin

To define a plugin that enables users to adjust stereo width:

1 Create a class definition that inherits from audioPlugin.
2 Parameterize the stereo width of the processing algorithm by defining the public property Width.
3 Enable users to tune the stereo width by defining an audioPluginInterface that contains

Width as an audioPluginParameter.
4 Define the audio processing by creating a process method. The process method takes the

audio input, in, and adjusts the stereo width by: (a) applying mid-side encoding, (b) adjusting the
stereo width based on the user-controlled Width parameter, and then (c) applying mid-side
decoding.

classdef StereoWidth < audioPlugin % <== (1) Inherit from audioPlugin.
 properties
 Width = 1; % <== (2) Define tunable property.
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(... % <== (3) Map tunable property to plugin parameter.
 audioPluginParameter('Width', ...
 'Mapping',{'pow',2,0,4}));
 end
 methods
 function out = process(plugin,in) %< == (4) Define audio processing.

 x = [in(:,1) + in(:,2), in(:,1) - in(:,2)]; % (a) Mid-side encoding.
 y = [x(:,1), x(:,2)*plugin.Width]; % (b) Adjust stereo width.
 out = [(y(:,1) + y(:,2))/2, (y(:,1) - y(:,2))/2]; % (c) Mid-side decoding.

 end
 end
end

Prototype the Audio Plugin

Once you have defined an audio plugin, you can prototype it using the Audio Test Bench app. The
Audio Test Bench app enables you to stream audio through the plugin while you tune parameters,
perform listening tests, and visualize the original and processed audio. To open your StereoWidth
plugin in the Audio Test Bench app, at the MATLAB® command prompt, enter:

audioTestBench(StereoWidth)

3 Audio Plugins

3-2

Validate and Generate a VST Plugin

You can validate a MATLAB® audio plugin and generate a VST plugin from the Audio Test Bench.
You can also validate and generate the plugin from the command line by using the
validateAudioPlugin and generateAudioPlugin functions. Once generated, you can deploy
your plugin to a digital audio workstation (DAW).

validateAudioPlugin StereoWidth
generateAudioPlugin StereoWidth

The VST plugin is saved to your working directory.

See Also
audioPlugin | audioPluginSource | audioPluginGridLayout | audioPluginInterface |
audioPluginParameter | generateAudioPlugin | validateAudioPlugin | Audio Test Bench

More About
• “What Are DAWs, Audio Plugins, and MIDI Controllers?” on page 9-2
• “Audio Plugins in MATLAB” on page 11-2
• “Convert MATLAB Code to an Audio Plugin” on page 13-2
• “Export a MATLAB Plugin to a DAW” on page 7-2
• “Host External Audio Plugins” on page 15-2

 Design an Audio Plugin

3-3

Deep Learning

4

Classify Sound Using Deep Learning
This example shows how to classify a sound by using deep learning processes.

Create a Data Set

Generate 1000 white noise signals, 1000 brown noise signals, and 1000 pink noise signals. Each
signal represents a duration of 0.5 seconds, assuming a 44.1 kHz sample rate.

fs = 44.1e3;
duration = 0.5;
N = duration*fs;

wNoise = 2*rand([N,1000]) - 1;
wLabels = repelem(categorical("white"),1000,1);

bNoise = filter(1,[1,-0.999],wNoise);
bNoise = bNoise./max(abs(bNoise),[],'all');
bLabels = repelem(categorical("brown"),1000,1);

pNoise = pinknoise([N,1000]);
pLabels = repelem(categorical("pink"),1000,1);

Explore the Data Set

Listen to a white noise signal and visualize it using the melSpectrogram function.

sound(wNoise(:,1),fs)
melSpectrogram(wNoise(:,1),fs)
title('White Noise')

4 Deep Learning

4-2

Inspect a brown noise signal.

sound(bNoise(:,1),fs)
melSpectrogram(bNoise(:,1),fs)
title('Brown Noise')

 Classify Sound Using Deep Learning

4-3

Inspect a pink noise signal.

sound(pNoise(:,1),fs)
melSpectrogram(pNoise(:,1),fs)
title('Pink Noise')

4 Deep Learning

4-4

Separate the Data Set into Train and Validation Sets

Create a training set that consists of 800 of the white noise signals, 800 of the brown noise signals,
and 800 of the pink noise signals.

audioTrain = [wNoise(:,1:800),bNoise(:,1:800),pNoise(:,1:800)];
labelsTrain = [wLabels(1:800);bLabels(1:800);pLabels(1:800)];

Create a validation set using the remaining 200 white noise signals, 200 brown noise signals, and 200
pink noise signals.

audioValidation = [wNoise(:,801:end),bNoise(:,801:end),pNoise(:,801:end)];
labelsValidation = [wLabels(801:end);bLabels(801:end);pLabels(801:end)];

Extract Features

Audio data is highly dimensional and typically contains redundant information. You can reduce the
dimensionality by first extracting features and then training your model using the extracted features.
Create an audioFeatureExtractor object to extract the centroid and slope of the mel spectrum
over time.

aFE = audioFeatureExtractor("SampleRate",fs, ...
 "SpectralDescriptorInput","melSpectrum", ...
 "spectralCentroid",true, ...
 "spectralSlope",true);

Call extract to extract the features from the audio training data.

 Classify Sound Using Deep Learning

4-5

featuresTrain = extract(aFE,audioTrain);
[numHopsPerSequence,numFeatures,numSignals] = size(featuresTrain)

numHopsPerSequence = 42

numFeatures = 2

numSignals = 2400

In the next step, you will treat the extracted features as sequences and use a sequenceInputLayer
as the first layer of your deep learning model. When you use sequenceInputLayer as the first layer
in a network, trainNetwork expects the training and validation data to be formatted in cell arrays
of sequences, where each sequence consists of feature vectors over time. sequenceInputLayer
requires the time dimension to be along the second dimension.

featuresTrain = permute(featuresTrain,[2,1,3]);
featuresTrain = squeeze(num2cell(featuresTrain,[1,2]));

numSignals = numel(featuresTrain)

numSignals = 2400

[numFeatures,numHopsPerSequence] = size(featuresTrain{1})

numFeatures = 2

numHopsPerSequence = 42

Extract the validation features.

featuresValidation = extract(aFE,audioValidation);
featuresValidation = permute(featuresValidation,[2,1,3]);
featuresValidation = squeeze(num2cell(featuresValidation,[1,2]));

Define and Train the Network

Define the network architecture. See “List of Deep Learning Layers” (Deep Learning Toolbox) for
more information.

layers = [...
 sequenceInputLayer(numFeatures)
 lstmLayer(50,"OutputMode","last")
 fullyConnectedLayer(numel(unique(labelsTrain)))
 softmaxLayer
 classificationLayer];

To define the training options, use trainingOptions (Deep Learning Toolbox).

options = trainingOptions("adam", ...
 "Shuffle","every-epoch", ...
 "ValidationData",{featuresValidation,labelsValidation}, ...
 "Plots","training-progress", ...
 "Verbose",false);

To train the network, use trainNetwork (Deep Learning Toolbox).

net = trainNetwork(featuresTrain,labelsTrain,layers,options);

4 Deep Learning

4-6

Test the Network

Use the trained network to classify new white noise, brown noise, and pink noise signals.

wNoiseTest = 2*rand([N,1]) - 1;
classify(net,extract(aFE,wNoiseTest)')

ans = categorical
 white

bNoiseTest = filter(1,[1,-0.999],wNoiseTest);
bNoiseTest= bNoiseTest./max(abs(bNoiseTest),[],'all');
classify(net,extract(aFE,bNoiseTest)')

ans = categorical
 brown

pNoiseTest = pinknoise(N);
classify(net,extract(aFE,pNoiseTest)')

ans = categorical
 pink

See Also
audioFeatureExtractor | audioDataAugmenter | audioDatastore | Audio Labeler

 Classify Sound Using Deep Learning

4-7

Related Examples
• “Keyword Spotting in Noise Using MFCC and LSTM Networks”
• “Acoustic Scene Recognition Using Late Fusion”
• “Spoken Digit Recognition with Wavelet Scattering and Deep Learning”
• “Voice Activity Detection in Noise Using Deep Learning”
• “Speech Command Recognition Using Deep Learning”
• “Denoise Speech Using Deep Learning Networks”
• “Speech Emotion Recognition”

4 Deep Learning

4-8

Intro to Audio Deep Learning

5

Introduction to Deep Learning for Audio Applications
Developing audio applications with deep learning typically includes creating and accessing data sets,
preprocessing and exploring data, developing predictive models, and deploying and sharing
applications. MATLAB provides toolboxes to support each stage of the development.

While Audio Toolbox supports each stage of the deep learning workflow, its principal contributions
are to “Access and Create Data” on page 5-2 and “Preprocess and Explore Data” on page 5-3.

Access and Create Data
Deep learning networks perform best when you have access to large training data sets. However, the
diversity of audio, speech, and acoustic signals, and a lack of large well-labeled data sets, makes
accessing large training sets difficult. When using deep learning methods on audio files, you may
need to develop new data sets or expand on existing ones. Audio Toolbox provides the Audio Labeler
app to help you enlarge or create new labeled data sets.

Once you have an initial data set, you can enlarge it by applying augmentation techniques such as
pitch shifting, time shifting, volume control, and noise addition. The type of augmentation you want to
apply depends on the relevant characteristics for your audio, speech, or acoustic application. For
example, pitch shifting (or vocal tract perturbation) and time stretching are typical augmentation
techniques for automatic speech recognition (ASR). For far-field ASR, augmenting the training data
by using artificial reverberation is common. Audio Toolbox provides audioDataAugmenter to help
you apply augmentations deterministically or probabilistically.

The training data used in deep learning workflows is typically too large to fit in memory. Accessing
data efficiently and performing common deep learning tasks (such as splitting a data set into train,
validation, and test sets) can quickly become unmanageable. Audio Toolbox provides
audioDatastore to help you manage and load large data sets.

5 Intro to Audio Deep Learning

5-2

Preprocess and Explore Data
Preprocessing audio data includes tasks like resampling audio files to a consistent sample rate,
removing regions of silence, and trimming audio to a consistent duration. You can accomplish these
tasks by using MATLAB, Signal Processing Toolbox™, and DSP System Toolbox™. Audio Toolbox
provides additional audio-specific tools to help you perform preprocessing, such as detectSpeech
and voiceActivityDetector.

Audio is highly dimensional and contains redundant and often unnecessary information. Historically,
mel-frequency cepstral coefficients (mfcc) and low-level features, such as the zero-crossing rate and
spectral shape descriptors, have been the dominant features derived from audio signals for use in
machine learning systems. Machine learning systems trained on these features are computationally
efficient and typically require less training data. Audio Toolbox provides audioFeatureExtractor
so that you can efficiently extract audio features.

Advances in deep learning architectures, increased access to computing power, and large and well-
labeled data sets have decreased the reliance on hand-designed features. State-of-the-art results are
often achieved using mel spectrograms (melSpectrogram), linear spectrograms, or raw audio
waveforms. Audio Toolbox provides audioFeatureExtractor so that you can extract multiple
auditory spectrograms, such as the mel spectrogram, gammatone spectrogram, or Bark spectrogram,
and pair them with low-level descriptors. Using audioFeatureExtractor enables you to
systematically determine audio features for your deep learning model. Alternatively, you can use the
melSpectrogram function to quickly extract just the mel spectrogram. Audio Toolbox also provides
the modified discrete cosine transform (mdct), which returns a compact spectral representation
without any loss of information.

Example Applications and Workflows
Choosing features, deciding what kind of augmentations and preprocessing to apply, and designing a
deep learning model all depend on the nature of the training data and the problem you want to solve.
Audio Toolbox provides examples that illustrate deep learning workflows adapted to different data
sets and audio applications. The table lists audio deep learning examples by network type
(convolutional neural network, fully connected neural network, or recurrent neural network) and
problem category (classification, regression, or sequence-to-sequence).

 CNN or FC LSTM,
BiLSTM, or

GRU

 Introduction to Deep Learning for Audio Applications

5-3

Classification Examples Preprocessin
g and

Augmentatio
n

Feature
Extraction
and Time-
Frequency

Transformati
ons

“Speech
Command

Recognition
Using Deep
Learning”

 The
audioFeatur
eExtractor
object is used
to extract the

log-Bark
spectrum.

“Acoustic
Scene

Recognition
Using Late

Fusion”

Mix-up melSpectrog
ram,

waveletScat
tering

“Accelerate
Audio Deep

Learning
Using GPU-

Based Feature
Extraction”

Mix-up The
audioFeatur
eExtractor
object is used
to extract the
mel spectrum.

Examples Preprocessin
g and

Augmentatio
n

Feature
Extraction
and Time-
Frequency

Transformati
ons

“Speech
Emotion

Recognition”

audioDataAu
gmenter

The
audioFeatur
eExtractor
object is used
to extract the
gtcc, mfcc,

and mel
spectralCre

st.
“Sequential

Feature
Selection for

Audio
Features”

detectSpeec
h

The
audioFeatur
eExtractor
object is used

to sweep
through

combinations
of extracted

features.
“Acoustics-

Based Machine
Fault

Recognition”

Mix-up The
audioFeatur
eExtractor
object is used

to extract
spectral

descriptors.

5 Intro to Audio Deep Learning

5-4

Regression or
Sequence-to-

Sequence

Examples Preprocessin
g and

Augmentatio
n

Feature
Extraction
and Time-
Frequency

Transformati
ons

“Denoise
Speech Using
Deep Learning

Networks”

 stft, istft,
compressor

“Cocktail Party
Source

Separation
Using Deep

Learning
Networks”

 stft, istft

“Train
Generative
Adversarial

Network
(GAN) for

Sound
Synthesis”

 stft, istft

“End-to-End
Deep Speech
Separation”

 stft, istft

Examples Preprocessin
g and

Augmentatio
n

Feature
Extraction
and Time-
Frequency

Transformati
ons

“Voice Activity
Detection in
Noise Using

Deep
Learning”

detectSpeec
h

The
audioFeatur
eExtractor
object is used
to extract the
spectralCen

troid,
spectralCre

st,
spectralEnt

ropy,
spectralFlu

x,
spectralKur

tosis,
spectralSke

wness,
spectralRol
loffPoint,
spectralSlo

pe, and
harmonicRat

io.
“Keyword

Spotting in
Noise Using
MFCC and

LSTM
Networks”

detectSpeec
h,

audioDataAu
gmenter

mfcc

References
[1] Purwins, H., B. Li, T. Virtanen, J. Schülter, S. Y. Chang, and T. Sainath. "Deep Learning for Audio

Signal Processing." Journal of Selected Topics of Signal Processing. Vol. 13, Issue 2, 2019, pp.
206–219.

See Also
audioFeatureExtractor | audioDataAugmenter | audioDatastore | Audio Labeler

Related Examples
• “Classify Sound Using Deep Learning” on page 4-2
• “Create Simple Sequence Classification Network Using Deep Network Designer” (Deep

Learning Toolbox)

 Introduction to Deep Learning for Audio Applications

5-5

• “Get Started with Deep Network Designer” (Deep Learning Toolbox)

5 Intro to Audio Deep Learning

5-6

Stream Audio

6

Process and Analyze Streaming Audio
This example shows how to create an audio test bench and apply real-time processing.

Open the Audio Test Bench

The Audio Test Bench app enables you to graphically set up your audio input and output, audio
processing, and open common analysis tools like timescope and dsp.SpectrumAnalyzer. Click

 to read from a file and write to your speaker.

audioTestBench

View the Audio Signal in the Time and Frequency Domains

Click and to analyze the audio signal in the time and frequency domains.

6 Stream Audio

6-2

Apply Dynamic Range Compression

To apply dynamic range compression to the audio, first click to stop the audio I/O, then enter
compressor in the Object Under Test edit box. The tunable properties of the compressor object
are exposed. You can tune these properties while the test bench runs.

 Process and Analyze Streaming Audio

6-3

6 Stream Audio

6-4

Generate a Test Bench Script

To generate a test bench script, first click to stop the audio I/O, then click . The Audio Test
Bench generates code in a new untitled script. The code generated by the test bench in this example
is shown below.

% Test bench script for 'compressor'.
% Generated by Audio Test Bench on 27-May-2020 15:34:48 -0400.

% Create test bench input and output
fileReader = dsp.AudioFileReader('Filename','RockGuitar-16-44p1-stereo-72secs.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

% Create scopes

 Process and Analyze Streaming Audio

6-5

timeScope = dsp.TimeScope('SampleRate',fileReader.SampleRate, ...
 'TimeSpan',1, ...
 'TimeSpanOverrunAction','Scroll', ...
 'AxesScaling','Manual', ...
 'BufferLength',4*fileReader.SampleRate, ...
 'ShowLegend',true, ...
 'ChannelNames',{'Input channel 1','Output channel 1'}, ...
 'ShowGrid',true, ...
 'YLimits',[-1 1]);
specScope = dsp.SpectrumAnalyzer('SampleRate',fileReader.SampleRate, ...
 'PlotAsTwoSidedSpectrum',false, ...
 'FrequencyScale','Log', ...
 'ShowLegend',true, ...
 'ChannelNames',{'Input channel 1','Output channel 1'}, ...
 'YLimits',[-137.68466894418421 21.786707286754297]);

% Set up the system under test
sut = compressor;
sut.SampleRate = fileReader.SampleRate;

% Uncomment to open visualizer:
% visualize(sut);

% Open parameterTuner for interactive tuning during simulation
tuner = parameterTuner(sut);
drawnow

% Stream processing loop
nUnderruns = 0;
while ~isDone(fileReader)
 % Read from input, process, and write to output
 in = fileReader();
 out = sut(in);
 nUnderruns = nUnderruns + deviceWriter(out);

 % Visualize input and output data in scopes
 timeScope([in(:,1),out(:,1)]);
 specScope([in(:,1),out(:,1)]);

 % Process parameterTuner callbacks
 drawnow limitrate
end

% Clean up
release(sut)
release(fileReader)
release(deviceWriter)
release(timeScope)
release(specScope)

You can add additional processing steps, scopes, and analysis tools to the script. If you run the
generated script, the parameterTuner opens and enables you to tune parameters while stream
processing.

6 Stream Audio

6-6

See Also
Audio Test Bench | parameterTuner | audioPlayerRecorder | dsp.AudioFileWriter |
dsp.AudioFileReader | audioDeviceReader | audioDeviceWriter

More About
• “Audio Input and Audio Output” on page 2-2
• “Real-Time Audio in Simulink” on page 12-2
• “Audio I/O: Buffering, Latency, and Throughput” on page 8-2

 Process and Analyze Streaming Audio

6-7

Export a MATLAB Plugin to a DAW

7

Export a MATLAB Plugin to a DAW
In this section...
“Plugin Development Workflow” on page 7-2
“Considerations When Generating Audio Plugins” on page 7-2
“How Audio Plugins Interact with the DAW Environment” on page 7-2

Audio Toolbox enables generation of VST plugins from MATLAB source code by using the
generateAudioPlugin function. The generated plugin is compatible with 32-bit and 64-bit
Windows, and 64-bit Mac host applications. After you generate a VST plugin, you can use your
generated audio plugin in a digital audio workstation (DAW).

Plugin Development Workflow
1 Design an audio plugin. For a tutorial on audio plugin architecture and design in the MATLAB

environment, See “Audio Plugins in MATLAB” on page 11-2.
2 Validate your audio plugin using the validateAudioPlugin function.

validateAudioPlugin myAudioPlugin
3 Test your audio plugin using Audio Test Bench.

audioTestBench myAudioPlugin
4 Generate your audio plugin using the generateAudioPlugin function.

generateAudioPlugin myAudioPlugin
5 Use your generated audio plugin in a DAW.

Considerations When Generating Audio Plugins
• Your plugin must be compatible with MATLAB code generation. See “MATLAB Programming for

Code Generation” (MATLAB Coder) for more information.
• Your generated plugin must be compatible with DAW environments. The DAW environment:

• Determines the sample rate and frame size at which a plugin is run, both of which are variable.
• Calls the reset function of your plugin at the beginning of each use and if the sample rate

changes.
• Requires a consistent input and output frame size for the plugin processing function.
• Must be synchronized with plugin parameters. Therefore, a plugin must not modify properties

associated with parameters.
• Requires that plugin properties associated with parameters are scalar values.

Use the validateAudioPlugin, Audio Test Bench, and generateAudioPlugin tools to guide
your audio plugin into a valid form capable of generation.

How Audio Plugins Interact with the DAW Environment
After you generate your plugin, plug it into a DAW environment. See documentation on your specific
DAW for details on adding plugins.

7 Export a MATLAB Plugin to a DAW

7-2

The audio plugin in the DAW environment interacts primarily through the processing function, reset
function, and interface properties of your plugin.

Initialization and Reset

• The DAW environment calls the reset function of the plugin the first time the plugin is used, or any
time the sample rate of the DAW environment is modified. You can use the getSampleRate
function to query the sample rate of the environment.

Processing

• The DAW environment passes a frame of an audio signal to the plugin. The DAW determines the
frame size. If the audio plugin is a source audio plugin, the DAW does not pass an input audio
signal.

• The processing function of your plugin performs the frame-based audio processing algorithm you
specified, and updates internal plugin properties as needed. Plugins must not write to properties
associated with parameters.

• The processing function of your plugin passes the processed audio signal out to the DAW
environment. The frame size of the output signal must match the frame size of the input signal. If
the audio plugin is a source audio plugin, you must use getSamplesPerFrame to determine the
output frame size. Because the environment frame rate is variable, you must call
getSamplesPerFrame for each output frame.

• Processing is performed iteratively frame by frame on an audio signal.

Tunability

• If you modify a parameter through the plugin dialog box, the synchronized public property
updates at that time. You can use the set method of MATLAB classes to modify private properties.

 Export a MATLAB Plugin to a DAW

7-3

See Also

More About
• “What Are DAWs, Audio Plugins, and MIDI Controllers?” on page 9-2
• “Audio Plugins in MATLAB” on page 11-2
• “Convert MATLAB Code to an Audio Plugin” on page 13-2

7 Export a MATLAB Plugin to a DAW

7-4

Audio I/O: Buffering, Latency, and
Throughput

8

Audio I/O: Buffering, Latency, and Throughput
Audio Toolbox is optimized for real-time stream processing. Its input and output System objects are
efficient, low-latency, and they control all necessary parameters so that you can trade off between
throughput and latency.

This tutorial describes how MATLAB software implements real-time stream processing. The tutorial
presents key terminology and basic techniques for optimizing your stream-processing algorithm. For
more detailed technical descriptions and concepts, see the documentation for the audio I/O System
objects used in this tutorial.

The concepts presented in this tutorial are described in terms of System objects in the MATLAB
environment. The same concepts can be applied to corresponding blocks in the Simulink®

environment.

Input Audio Stream
To acquire an audio stream from a file, use the dsp.AudioFileReader System object™. To acquire
an audio stream from a device, use the audioDeviceReader System object.

This diagram and the description that follows indicate the data flow when acquiring a monochannel
signal with the audioDeviceReader System object.

Configuration

• Properties of your audioDeviceReader specify the driver, device (sound card), sample rate, bit
depth, buffer size, and channel mapping between your device's input channels and columns output
from your audioDeviceReader object. Your object communicates these specifications to the
driver once at setup.

Real-Time Processing Loop

1 The microphone picks up the sound and sends a continuous electrical signal to your sound card.
2 The sound card performs analog-to-digital conversion at a sample rate, buffer size, and bit depth

specified during configuration.

8 Audio I/O: Buffering, Latency, and Throughput

8-2

3 The analog-to-digital converter writes audio samples into the sound card buffer. If the buffer is
full, the new samples are dropped. These samples are referred to as overruns.

4 The audioDeviceReader uses the driver to pull the oldest frame from the sound card buffer
iteratively.

Output Audio Stream
To send an audio stream to a file, use the dsp.AudioFileWriter System object. To send an audio
stream to a device, use the audioDeviceWriter System object.

This diagram and the description that follows indicate the data flow when playing a monochannel
signal with the audioDeviceWriter System object.

Configuration

• Properties of your audioDeviceWriter specify the driver, device (sound card), sample rate, bit
depth, buffer size, and channel mapping between your device's output channels and columns input
to your audioDeviceWriter object. Your object communicates these specifications to the driver
once at setup.

Real-Time Processing Loop

1 The processing stage passes a frame of variable length to the audioDeviceWriter System
object.

2 audioDeviceWriter sends the frame to the sound card’s buffer.
3 The sound card pulls the oldest frame from the buffer and performs digital-to-analog conversion.

The sound card sends the analog chunk to the speaker. If the buffer is empty when the sound
card tries to pull from it, the sound card outputs a region of silence. This is referred to as
underrun.

Synchronize Audio to and from Device
To simultaneously read from and write to a single audio device, use the audioPlayerRecorder
System object.

 Audio I/O: Buffering, Latency, and Throughput

8-3

This diagram and the description that follows indicate the data flow when playing and recording
monochannel signals with the audioPlayerRecorder System object.

Configuration

• Properties of your audioPlayerRecorder specify the device (sound card), sample rate, bit
depth, buffer size, and channel mapping between your device and object. Your object
communicates these specifications to the driver once at setup.

Real-Time Processing Loop

1 The microphone picks up the sound and sends a continuous electrical signal to your sound card.
Simultaneously, the speaker plays an analog chunk received from the sound card.

2 The sound card performs analog-to-digital conversion of the acquired audio signal and writes the
digital chunk to the input buffer. If the input buffer is full, the new samples are dropped.
Simultaneously, the sound card pulls the oldest frame from the output buffer and performs
digital-to-analog conversion of the next audio chunk to be played. If the output buffer is empty
when the sound card tries to retrieve the data, the sound card outputs a region of silence.

3 The audioPlayerRecorder object returns the acquired audio signal to the MATLAB
environment for processing. Simultaneously, the audio to be played is specified as an argument of
the audioPlayerRecorder for playback in the next I/O cycle.

Terminology and Techniques to Optimize Performance
Signal Drops

• Underrun refers to output signal silence. Output signal silence occurs if the device buffer is empty
when it is time for digital-to-analog conversion. This results when the processing loop in MATLAB
does not supply samples at the rate the sound card demands. The number of samples underrun is
returned when you call your audioPlayerRecorder or audioDeviceWriter object.

• Overrun refers to input signal drops. Input signal drops occur when the processing stage does not
keep pace with the acquisition of samples. The number of samples overrun is returned when you
call your audioPlayerRecorder or audioDeviceReader object.

8 Audio I/O: Buffering, Latency, and Throughput

8-4

If you encounter overrun or underrun, try improving your I/O system in one or more of the following
ways:

1 Identify when the overrun or underrun occurs. If it occurs in the first few iterations, consider
calling setupImpl on your System objects before the loop where real-time processing is
required. You can also run the I/O system with dummy data for a few frames before starting the
real processing. For more information, see “Measure Performance of Streaming Real-Time Audio
Algorithms”.

2 If you are using a DirectSound driver on a Windows® platform, consider switching to a WASAPI
or ASIO driver. ASIO drivers have the least overhead. If you are using an ASIO driver, make sure
to match the frame size in MATLAB to the ASIO buffer size. You can use asiosettings to open
the ASIO preferences UI from MATLAB.

3 If you can afford to add more latency to your application, consider increasing the buffer size of
your object. By default, the buffer size is the frame size of the data processed by the audio object.

4 If you can afford to decrease signal resolution, consider decreasing the sample rate.
5 Close all nonessential processes on your machine, such as mail checkers and file sync utilities.

These processes can asynchronously ask for CPU time through interrupts and disturb the audio-
processing loop.

6 To maximize performance, remove all plotting and visualization from your real-time loop. If you
require a visualization to update in your processing loop, use a DSP System Toolbox scope such
as timescope, dsp.SpectrumAnalyzer, or dsp.ArrayPlot. Follow the recommendations
listed in point 1 to setup and pre-run your scopes. If you require custom graphics or are
processing callbacks in the loop, use the drawnow command and specify a limited update rate to
optimize your event queue.

7 If the processing loop is algorithm heavy, try profiling your loop to locate the bottlenecks, and
then apply appropriate measures:

• Replace handwritten code with MATLAB features that have been optimized for speed.
• Follow best practices for performance: “Techniques to Improve Performance”.
• Generating MATLAB executables (MEX files) using MATLAB Coder™ may result in faster

execution. See “Remove Interfering Tone From Audio Stream” for an example.

You can also generate standalone executables (EXE files). See “Generate Standalone
Executable for Parametric Audio Equalizer” for an example.

• If you are considering turning your algorithm into a VST plugin, then try running it as a VST
plugin within MATLAB. VST plugin generation uses C code generation technology under the
hood, and running the generated VST plugin within MATLAB may result in faster execution
than with your original MATLAB code. See “Audio Plugins in MATLAB” on page 11-2 and
“Host External Audio Plugins” on page 15-2 to learn how to design, generate, and then host
a VST plugin.

Latency

• Output latency is measured as the time delay between the time of generation of an audio frame in
MATLAB and the time that audio is heard through the speaker.

• Input latency is measured as the time delay between the time that audio enters the sound card
and the time that the frame is output by the processing stage.

If properties and frame size remain consistent, the ratio of input latency to output latency is
consistent between calls to an audioPlayerRecorder object.

 Audio I/O: Buffering, Latency, and Throughput

8-5

To minimize latency, you can:

1 Optimize the processing stage. If your processing stage has reached a peak algorithmically,
compiling your MATLAB code into C code using MATLAB Coder may result in faster execution.

2 Increase the sample rate.
3 Decrease the frame size.

For a tutorial on measuring the round-trip latency of your system, see “Measure Audio Latency”.

See Also
asiosettings | getAudioDevices | dsp.AudioFileReader | dsp.AudioFileWriter |
audioDeviceReader | audioDeviceWriter | audioPlayerRecorder | Audio Device Reader |
Audio Device Writer | From Multimedia File | To Multimedia File

More About
• “Real-Time Audio in MATLAB” on page 10-2
• “Real-Time Audio in Simulink” on page 12-2

8 Audio I/O: Buffering, Latency, and Throughput

8-6

What Are DAWs, Audio Plugins, and
MIDI Controllers?

9

What Are DAWs, Audio Plugins, and MIDI Controllers?
In this section...
“Digital Audio Workstation (DAW)” on page 9-2
“Audio Plugins” on page 9-2
“Musical Instrument Digital Interface (MIDI)” on page 9-2

Digital Audio Workstation (DAW)
A digital audio workstation (DAW) is an electronic device or software application used to record, edit,
and produce sound files. DAWs are controlled with a user interface. Most DAWs allow MIDI controls
to tune parameters during live editing.

In the music industry, DAWs are typically used to acquire and save multiple tracks of audio
recordings, and to mix, equalize, and add audio effects. DAWs generally have access to libraries of
sounds and are used to create electronic music from scratch. Commercial DAWs, such as those found
in recording studios, can be hardware integrated into computers.

DAWs are also used in the production of radio, television, film, podcasts, games, and anywhere
complex manipulation of audio signals is needed.

DAWs generally support plugins, which are smaller pieces of software with unique functionality,
therefore expanding the abilities of the DAW user.

Audio Plugins
Plugins are self-contained pieces of code that can be "plugged in" to DAWs to enhance their
functionality. Generally, plugins fall into the categories of audio signal processing, analysis, or sound
synthesis. Plugins usually specify a user-interface containing UI widgets, but the DAW interface might
mask it. Typical plugins include equalization, dynamic range control, reverberation, delay, and virtual
instruments.

To process streaming audio data, the DAW calls the plugin, passes in a frame of input audio data, and
receives back a frame of processed output audio data. When a plugin parameter changes (for
example, when you move a control on the plugin’s UI), the DAW notifies the plugin of the new
parameter value. Plugins usually have their own custom UI, but DAWs also provide a generic UI for
all plugins.

Audio Toolbox supports code generation to the most common plugin format, Steinberg’s VST (Virtual
Studio Technology). Audio Toolbox also enables you to run and test externally authored VST and VST3
plugins directly in MATLAB.

For a discussion of plugin terminology and usage in the MATLAB environment, see “Audio Plugins in
MATLAB” on page 11-2.

Musical Instrument Digital Interface (MIDI)
Musical Instrument Digital Interface (MIDI) is a technical standard for communication between
electronic instruments, computers, and related devices. MIDI carries event messages specific to

9 What Are DAWs, Audio Plugins, and MIDI Controllers?

9-2

audio signals, such as pitch and velocity, as well as control signals for parameters such as volume,
vibrato, panning, cues, and clock signals to synchronize tempo.

MIDI controllers are devices that send MIDI messages. Common devices include electronic keyboards
or surfaces with sliders, knobs, and buttons. For DAWs, MIDI controllers can be physical
instantiations of functionality present in the DAW. The DAW user can interact using a keyboard and
mouse and MIDI controllers.

See Also

More About
• “Audio Plugins in MATLAB” on page 11-2
• “Host External Audio Plugins” on page 15-2
• “Audio Plugin Example Gallery”
• “MIDI Control Surface Interface”
• “MIDI Control for Audio Plugins”

External Websites
• MIDI Manufacturers Association

 What Are DAWs, Audio Plugins, and MIDI Controllers?

9-3

https://www.midi.org/

Real-Time Audio in MATLAB

10

Real-Time Audio in MATLAB
In this section...
“Create a Development Test Bench” on page 10-2
“Add Tunability” on page 10-6
“Quick Start Examples” on page 10-7

Audio Toolbox is optimized for real-time audio processing. audioDeviceReader,
audioDeviceWriter, audioPlayerRecorder, dsp.AudioFileReader, and
dsp.AudioFileWriter are designed for streaming multichannel audio, and they provide necessary
parameters so that you can trade off between throughput and latency.

For information on real-time processing and tips on how to optimize your algorithm, see “Audio I/O:
Buffering, Latency, and Throughput” on page 8-2.

This tutorial describes how you can implement audio stream processing in MATLAB. It outlines the
workflow for creating a development test bench and provides examples for each stage of the
workflow.

Create a Development Test Bench
This tutorial creates a development test bench in four steps:

1 Build objects to input and output audio from your test bench.
2 Create an audio stream loop that processes your audio frame-by-frame.
3 Add a scope to visualize both the input and output of your audio stream loop.
4 Add a processing algorithm for your audio stream loop.

This tutorial also discusses tools for visualizing and tuning your processing algorithm in real time.

For an overview of the processing loop, consider the completed test bench below. You can recreate
this test bench by walking step-by-step through this tutorial.

10 Real-Time Audio in MATLAB

10-2

Completed Test Bench Code

Click here to open the file.

frameLength = 1024;
fileReader = dsp.AudioFileReader(...
 'Counting-16-44p1-mono-15secs.wav', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

scope = timescope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpan',2, ...
 'BufferLength',fileReader.SampleRate*2*2, ...
 'YLimits',[-1,1], ...
 'TimeSpanOverrunAction',"Scroll");

reverb = reverberator(...

 Real-Time Audio in MATLAB

10-3

 'SampleRate',fileReader.SampleRate, ...
 'PreDelay',0.5, ...
 'WetDryMix',0.4);

while ~isDone(fileReader)
 signal = fileReader();
 reverbSignal = reverb(signal);
 deviceWriter(reverbSignal);
 scope([signal,mean(reverbSignal,2)])
end

release(fileReader)
release(deviceWriter)
release(reverb)
release(scope)

1. Create Input/Output System objects

Your audio stream loop can read from a device or a file, and it can write to a device or a file. In this
example, you build an audio stream loop that reads audio frame-by-frame from a file and writes audio
frame-by-frame to a device. See “Quick Start Examples” on page 10-7 for alternative input/output
configurations.

Create a dsp.AudioFileReader System object and specify a file. To reduce latency, set the
SamplesPerFrame property of the dsp.AudioFileReader System object to a small frame size.

Next, create an audioDeviceWriter System object and specify its sample rate as the sample rate of
the file reader.

For more information on how to use System objects, see “What Are System Objects?”

View Example Code

frameLength = 1024;
fileReader = dsp.AudioFileReader(...
 'Counting-16-44p1-mono-15secs.wav', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

2. Create Audio Stream Loop

An audio stream loop processes audio iteratively. It does so by:

• Reading a frame of an audio signal
• Processing that frame of audio signal
• Writing that frame of audio signal to a device or file
• Moving to the next frame

In this tutorial, the input to the audio stream loop is read from a file. The output is written to a
device.

To read an audio file frame-by-frame, call your dsp.AudioFileReader within your audio stream
loop, and provide no arguments. To write an audio signal frame-by-frame, call your
audioDeviceWriter within your audio stream loop with an audio signal as an argument.

10 Real-Time Audio in MATLAB

10-4

View Example Code
frameLength = 1024;

fileReader = dsp.AudioFileReader(...
 'Counting-16-44p1-mono-15secs.wav', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

while ~isDone(fileReader) %<--- new lines of code
 signal = fileReader(); %<---
 deviceWriter(signal); %<---
end %<---

release(fileReader) %<---
release(deviceWriter) %<---

All System objects have a release function. As a best practice, release your System objects after
use, especially if those System objects are communicating with hardware devices such as sound
cards.

3. Add Scopes

There are several scopes available. Two common scopes are the timescope and the
dsp.SpectrumAnalyzer. This tutorial uses timescope to visualize the audio signal.

The timescope System object displays an audio signal in the time domain. Create the System object.
To aid visualization, specify values for the TimeSpan, BufferLength, and YLimits properties. To
visualize an audio signal frame-by-frame, call the timescope System object within your audio stream
loop with an audio signal as an argument.

View Example Code
frameLength = 1024;

fileReader = dsp.AudioFileReader(...
 'Counting-16-44p1-mono-15secs.wav', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

scope = timescope(... %<--- new lines of code
 'SampleRate',fileReader.SampleRate, ... %<---
 'TimeSpan',2, ... %<---
 'BufferLength',fileReader.SampleRate*2*2, ... %<---
 'YLimits',[-1,1], ... %<---
 'TimeSpanOverrunAction',"Scroll"); %<---

while ~isDone(fileReader)
 signal = fileReader();
 deviceWriter(signal);
 scope(signal) %<---
end

release(fileReader)
release(deviceWriter)
release(scope) %<---

 Real-Time Audio in MATLAB

10-5

4. Develop Processing Algorithm

In most applications, you want to process your audio signal within your audio stream loop. The
processing stage can be:

• A block of MATLAB code within your audio stream loop
• A separate function called within your audio stream loop
• A System object called within your audio stream loop

In this tutorial, you call the reverberator to process the signal within your audio stream loop.

Create a reverberator System object, and specify the SampleRate property as the sample rate of
your file reader. To adjust the reverberation effect, specify values for the PreDelay and WetDryMix
properties. To apply the reverberation effect to an audio signal frame-by-frame, call the
reverberator within your audio stream loop with an audio signal as an argument.

View Example Code
frameLength = 256;
fileReader = dsp.AudioFileReader(...
 'Counting-16-44p1-mono-15secs.wav', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

scope = timescope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpan',2, ...
 'BufferLength',fileReader.SampleRate*2*2, ...
 'YLimits',[-1,1], ...
 'TimeSpanOverrunAction',"Scroll");

reverb = reverberator(... %<--- new lines of code
 'SampleRate',fileReader.SampleRate, ... %<---
 'PreDelay',0.5, ... %<---
 'WetDryMix',0.4); %<---

while ~isDone(fileReader)
 signal = fileReader();
 reverbSignal = reverb(signal); %<---
 deviceWriter(reverbSignal); %<---
 scope([signal,mean(reverbSignal,2)]) %<---
end

release(fileReader)
release(deviceWriter)
release(reverb) %<---
release(scope)

Add Tunability
The Audio Toolbox user has several options to add real-time tunability to a processing algorithm. To
add tunability to your audio stream loop, you can use:

• The Audio Test Bench – UI-based exercises for audioPlugin classes and most Audio Toolbox
System objects.

10 Real-Time Audio in MATLAB

10-6

• Built-in functions – Functions in Audio Toolbox for visualizing key aspects of your processing
algorithms.

• A custom-built user interface – See “Real-Time Parameter Tuning” for a tutorial.
• A MIDI Controller – Many Audio Toolbox System objects include functions that support MIDI

controls. You can use the configureMIDI function in the reverberator System object to
synchronize your System object properties to MIDI controls. To use MIDI controls with System
objects that do not have a configureMIDI function, see “MIDI Control Surface Interface”.

• The User Datagram Protocol (UDP) – You can use UDP within MATLAB for connectionless
transmission. You can also use UDP to receive or transmit datagrams between environments.
Possible applications include using MATLAB tools to tune your audio processing algorithm while
playing and visualizing your audio in a third-party environment. For an example application of
UDP communication, see “Communicate Between a DAW and MATLAB Using UDP”.

Quick Start Examples
Audio Stream from Device to Device

This example uses the audioDeviceReader and audioDeviceWriter System objects to perform
real-time I/O stream processing. The processing is limited to adding gain. Click here to open the file.
%% Real-Time Audio Stream Processing
%
% The Audio System Toolbox provides real-time, low-latency processing of
% audio signals using the System objects audioDeviceReader and
% audioDeviceWriter.
%
% This example shows how to acquire an audio signal using your microphone,
% perform basic signal processing, and play back your processed
% signal.
%

%% Create input and output objects
deviceReader = audioDeviceReader;
deviceWriter = audioDeviceWriter('SampleRate',deviceReader.SampleRate);

%% Specify an audio processing algorithm
% For simplicity, only add gain.
process = @(x) x.*5;

%% Code for stream processing
% Place the following steps in a while loop for continuous stream
% processing:
% 1. Call your audio device reader with no arguments to
% acquire one input frame.
% 2. Perform your signal processing operation on the input frame.
% 3. Call your audio device writer with the processed
% frame as an argument.

disp('Begin Signal Input...')
tic
while toc<5
 mySignal = deviceReader();
 myProcessedSignal = process(mySignal);
 deviceWriter(myProcessedSignal);
end
disp('End Signal Input')

release(deviceReader)
release(deviceWriter)

Audio Stream from Device to File

This example uses the audioDeviceReader and dsp.AudioFileWriter System objects to perform
real-time I/O stream processing. The processing is limited to adding gain. Click here to open the file.
%% Real-Time Audio Stream Processing
%

 Real-Time Audio in MATLAB

10-7

% The Audio System Toolbox provides real-time, low-latency processing of
% audio signals using the System objects audioDeviceReader and
% dsp.AudioFileWriter.
%
% This example shows how to acquire an audio signal using your microphone,
% perform basic signal processing, and write your signal to a file.
%

%% Create input and output objects
% Use the sample rate of your input as the sample rate of your output.
deviceReader = audioDeviceReader;
fileWriter = dsp.AudioFileWriter('SampleRate',deviceReader.SampleRate);

%% Specify an audio processing algorithm
% For simplicity, only add gain.
process = @(x) x.*5;

%% Code for stream processing
% Place the following steps in a while loop for continuous stream
% processing:
% 1. Call your audio device reader with no arguments to
% acquire one input frame.
% 2. Perform your signal processing operation on the input frame.
% 3. Call your audio file reader with the processed frame
% as an argument.
% Note: The file is named 'output.wav' and written to current folder by default.

disp('Begin Signal Input...')
tic
while toc<5
 mySignal = deviceReader();
 myProcessedSignal = process(mySignal);
 fileWriter(myProcessedSignal);
end
disp('End Signal Input')

release(deviceReader)
release(fileWriter)

Audio Stream from File to Device

This example uses the dsp.AudioFileReader and audioDeviceWriter System objects to perform
real-time I/O stream processing. The processing is limited to adding gain. Click here to open the file.

%% Real-Time Audio Stream Processing
%
% The Audio System Toolbox provides real-time, low-latency processing of
% audio signals using the System objects dsp.AudioFileReader and
% audioDeviceWriter.
%
% This example shows how to acquire an audio signal using
% dsp.AudioFileReader, perform basic signal processing, and play your
% processed signal using audioDeviceWriter.
%

%% Create input and output objects
% Use the sample rate of your input as the sample rate of your output.
fileReader = dsp.AudioFileReader('speech_dft.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

%% Specify an audio processing algorithm
% For simplicity, only add gain.
process = @(x) x.*5;

%% Code for stream processing
% Place the following steps in a while loop for continuous stream
% processing until dsp.AudioFileReader is done reading the file:
% 1. Call your audio file reader with no arguments to
% read one input frame.

10 Real-Time Audio in MATLAB

10-8

% 2. Perform your signal processing operation on the input frame.
% 3. Call your audio device writer with the processed
% frame as an argument.

while ~isDone(fileReader)
 mySignal = fileReader();
 myProcessedSignal = process(mySignal);
 deviceWriter(myProcessedSignal);
end

release(fileReader)
release(deviceWriter)

See Also

More About
• “Real-Time Audio in Simulink” on page 12-2
• “Audio I/O: Buffering, Latency, and Throughput” on page 8-2
• “MIDI Control Surface Interface”
• “Audio Test Bench Walkthrough”

 Real-Time Audio in MATLAB

10-9

Audio Plugins in MATLAB

11

Audio Plugins in MATLAB
In this section...
“Role of Audio Plugins in Audio Toolbox” on page 11-2
“Defining Audio Plugins in the MATLAB Environment” on page 11-2
“Design a Basic Plugin” on page 11-3
“Design a System Object Plugin” on page 11-8
“Quick Start Basic Plugin” on page 11-9
“Quick Start Basic Source Plugin” on page 11-10
“Quick Start System Object Plugin” on page 11-11
“Quick Start System Object Source Plugin” on page 11-12
“Audio Toolbox Extended Terminology” on page 11-14

Role of Audio Plugins in Audio Toolbox
The audio plugin is the suggested paradigm for developing your audio processing algorithm in Audio
Toolbox. Once designed, the audio plugin can be validated, generated, and deployed to a third-party
digital audio workstation (DAW).

Additional benefits of developing your audio processing as an audio plugin include:

• Rapid prototyping using the Audio Test Bench
• Integration with MIDI devices
• Code reuse

Some understanding of object-oriented programming (OOP) in the MATLAB environment is required
to optimize your use of the audio plugin paradigm. If you are unfamiliar with these concepts, see
“Why Use Object-Oriented Design”.

For a review of audio plugins as defined outside the MATLAB environment, see “What Are DAWs,
Audio Plugins, and MIDI Controllers?” on page 9-2

Defining Audio Plugins in the MATLAB Environment
In the MATLAB environment, an audio plugin refers to a class derived from the audioPlugin base
class or the audioPluginSource base class.

11 Audio Plugins in MATLAB

11-2

Audio Toolbox documentation uses the following terminology:

• A plugin is any audio plugin that derives from the audioPlugin class or the
audioPluginSource class.

• A basic plugin is an audio plugin that derives from the audioPlugin class.
• A basic source plugin is an audio plugin that derives from the audioPluginSource class.

Audio plugins can also inherit from matlab.System. Any object that derives from matlab.System
is referred to as a System object. Deriving from matlab.System allows for additional functionality,
including Simulink integration. However, manipulating System objects requires a more advanced
understanding of OOP in the MATLAB environment.

See “Audio Toolbox Extended Terminology” on page 11-14 for a detailed visualization of inheritance
and terminology.

Design a Basic Plugin
In this example, you create a simple plugin, and then gradually increase complexity. Your final plugin
uses a circular buffer to add an echo effect to an input audio signal. For additional considerations for
generating a plugin, see “Export a MATLAB Plugin to a DAW” on page 7-2.

1 Define a Basic Plugin Class. Begin with a simple plugin that copies input to output without
modification.

classdef myEchoPlugin < audioPlugin
 methods
 function out = process(~, in)
 out = in;
 end
 end
end

myEchoPlugin illustrates the two minimum requirements for audio plugin classes. They must:

• Inherit from audioPlugin class
• Have a process method

The process method contains the primary frame-based audio processing algorithm. It is called
in an audio stream loop to process an audio signal over time.

 Audio Plugins in MATLAB

11-3

By default, both the input to and output from the process method have two channels (columns).
The number of input rows (frame size) passed to process is determined by the environment in
which it is run. The output must have the same number of rows as the input.

2 Add a Plugin Property. A property can store information in an object. Add a property, Gain,
to your class definition. Modify your process method to multiply the input by the value specified
by the Gain property.

View Code

classdef myEchoPlugin < audioPlugin
 properties %<---
 Gain = 1.5; %<---
 end %<---
 methods
 function out = process(plugin, in) %<---
 out = in*plugin.Gain; %<---
 end
 end
end

The first argument of the process method has changed from ~ to plugin. The first argument of
process is reserved for the audio plugin object.

3 Add a Plugin Parameter. Plugin parameters are the interface between plugin properties and
the plugin user. The definition of this interface is handled by audioPluginInterface, which
holds audioPluginParameter objects. To associate a plugin property to a parameter, specify
the first argument of audioPluginParameter as a character vector entered exactly as the
property you want to associate. The remaining arguments of audioPluginParameter specify
optional additional parameter attributes.

In this example, you specify a mapping between the value of the parameter and its associated
property, as well as the parameter display name as it appears on a plugin dialog box. By
specifying 'Mapping' as {'lin',0,3}, you set a linear mapping between the Gain property
and the associated user-facing parameter, with an allowable range for the property between 0
and 3.

View Code

classdef myEchoPlugin < audioPlugin
 properties
 Gain = 1.5;
 end
 properties (Constant) %<---
 PluginInterface = audioPluginInterface(... %<---
 audioPluginParameter('Gain', ... %<---
 'DisplayName','Echo Gain', ... %<---
 'Mapping',{'lin',0,3})) %<---
 end %<---
 methods
 function out = process(plugin, in)
 out = in*plugin.Gain;
 end
 end
end

4 Add Private Properties. Add properties to store a circular buffer, a buffer index, and the N-
sample delay of your echo. Because the plugin user does not need to see them, make

11 Audio Plugins in MATLAB

11-4

CircularBuffer, BufferIndex, and NSamples private properties. It is best practice to
initialize properties to their type and size.

View Code

classdef myEchoPlugin < audioPlugin
 properties
 Gain = 1.5;
 end
 properties (Access = private) %<---
 CircularBuffer = zeros(192001,2); %<---
 BufferIndex = 1; %<---
 NSamples = 0; %<---
 end %<---
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain', ...
 'DisplayName','Echo Gain', ...
 'Mapping',{'lin',0,3}))
 end
 methods
 function out = process(plugin, in)
 out = in*plugin.Gain;
 end
 end
end

5 Add an Echo. In the process method, write to and read from your circular buffer to create
an output that consists of your input and a gain-adjusted echo. The first line of the process
method initializes the output to the size of the input. It is best practice to initialize your output to
avoid errors when generating plugins.

View Code

classdef myEchoPlugin < audioPlugin
 properties
 Gain = 1.5;
 end
 properties (Access = private)
 CircularBuffer = zeros(192001,2);
 BufferIndex = 1;
 NSamples = 0;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain',...
 'DisplayName','Echo Gain',...
 'Mapping',{'lin',0,3}))
 end
 methods
 function out = process(plugin, in)
 out = zeros(size(in)); %<---
 writeIndex = plugin.BufferIndex; %<---
 readIndex = writeIndex - plugin.NSamples; %<---
 if readIndex <= 0 %<---
 readIndex = readIndex + 192001; %<---
 end %<---
 %<---

 Audio Plugins in MATLAB

11-5

 for i = 1:size(in,1) %<---
 plugin.CircularBuffer(writeIndex,:) = in(i,:); %<---
 %<---
 echo = plugin.CircularBuffer(readIndex,:); %<---
 out(i,:) = in(i,:) + echo * plugin.Gain; %<---
 %<---
 writeIndex = writeIndex + 1; %<---
 if writeIndex > 192001 %<---
 writeIndex = 1; %<---
 end %<---
 %<---
 readIndex = readIndex + 1; %<---
 if readIndex > 192001 %<---
 readIndex = 1; %<---
 end %<---
 end %<---
 plugin.BufferIndex = writeIndex; %<---
 end
 end
end

6 Make the Echo Delay Tunable. To allow the user to modify the NSamples delay of the echo,
define a public property, Delay, and associate it with a parameter. Use the default
audioPluginParameter mapping to allow the user to set the echo delay between 0 and 1
seconds.

Add a set method that listens for changes to the Delay property. Use the getSampleRate
method of the audioPlugin base class to return the environment sample rate. Approximate a
delay specified in seconds as a number of samples, NSamples. If the plugin user modifies the
Delay property, set.Delay is called and the delay in samples (NSamples) is calculated. If the
environment sample rate is above 192,000 Hz, the plugin does not perform as expected.

View Code
classdef myEchoPlugin < audioPlugin
 properties
 Gain = 1.5;
 Delay = 0.5; %<---
 end
 properties (Access = private)
 CircularBuffer = zeros(192001,2);
 BufferIndex = 1;
 NSamples = 0;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain',...
 'DisplayName','Echo Gain',...
 'Mapping',{'lin',0,3}),... %<---
 audioPluginParameter('Delay',... %<---
 'DisplayName','Echo Delay',... %<---
 'Label','seconds')) %<---
 end
 methods
 function out = process(plugin, in)
 out = zeros(size(in));
 writeIndex = plugin.BufferIndex;
 readIndex = writeIndex - plugin.NSamples;

11 Audio Plugins in MATLAB

11-6

 if readIndex <= 0
 readIndex = readIndex + 192001;
 end

 for i = 1:size(in,1)
 plugin.CircularBuffer(writeIndex,:) = in(i,:);

 echo = plugin.CircularBuffer(readIndex,:);
 out(i,:) = in(i,:) + echo*plugin.Gain;

 writeIndex = writeIndex + 1;
 if writeIndex > 192001
 writeIndex = 1;
 end

 readIndex = readIndex + 1;
 if readIndex > 192001
 readIndex = 1;
 end
 end
 plugin.BufferIndex = writeIndex;
 end
 function set.Delay(plugin, val) %<---
 plugin.Delay = val; %<---
 plugin.NSamples = floor(getSampleRate(plugin)*val); %<---
 end %<---
 end
end

7 Add a Reset Function. The reset method of a plugin contains instructions to reset the
plugin between uses or when the environment sample rate changes. Because NSamples depends
on the environment sample rate, update its value in the reset method.

View Code
classdef myEchoPlugin < audioPlugin
 properties
 Gain = 1.5;
 Delay = 0.5;
 end
 properties (Access = private)
 CircularBuffer = zeros(192001,2);
 BufferIndex = 1;
 NSamples = 0;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain',...
 'DisplayName','Echo Gain',...
 'Mapping',{'lin',0,3}),...
 audioPluginParameter('Delay',...
 'DisplayName','Echo',...
 'Label','seconds'))
 end
 methods
 function out = process(plugin, in)
 out = zeros(size(in));
 writeIndex = plugin.BufferIndex;
 readIndex = writeIndex - plugin.NSamples;
 if readIndex <= 0
 readIndex = readIndex + 192001;
 end

 for i = 1:size(in,1)
 plugin.CircularBuffer(writeIndex,:) = in(i,:);

 echo = plugin.CircularBuffer(readIndex,:);
 out(i,:) = in(i,:) + echo*plugin.Gain;

 Audio Plugins in MATLAB

11-7

 writeIndex = writeIndex + 1;
 if writeIndex > 192001
 writeIndex = 1;
 end

 readIndex = readIndex + 1;
 if readIndex > 192001
 readIndex = 1;
 end
 end
 plugin.BufferIndex = writeIndex;
 end
 function set.Delay(plugin, val)
 plugin.Delay = val;
 plugin.NSamples = floor(getSampleRate(plugin)*val);
 end
 function reset(plugin) %<---
 plugin.CircularBuffer = zeros(192001,2); %<---
 plugin.NSamples = floor(getSampleRate(plugin)*plugin.Delay);%<---
 end %<---
 end
end

Click here to open the completed plugin in MATLAB.

Design a System Object Plugin
You can map the basic plugin to a System object plugin. Note the differences between the two plugin
types:

• A System object plugin inherits from both the audioPlugin base class and the matlab.System
base class, not just audioPlugin base class.

• The primary audio processing method of a System object plugin is named stepImpl, not
process.

• The reset method of a System object is named resetImpl, not reset.
• Both resetImpl and stepImpl must be defined as protected methods.
• System objects enable alternatives to the set method. For more information, see

processTunedPropertiesImpl.

System Object Plugin
classdef myEchoSystemObjectPlugin < audioPlugin & matlab.System
 properties
 Gain = 1.5;
 Delay = 0.5;
 end
 properties (Access = private)
 CircularBuffer = zeros(192001,2);
 BufferIndex = 1;
 NSamples = 0;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain',...
 'DisplayName','Echo Gain',...
 'Mapping',{'lin',0,3}),...
 audioPluginParameter('Delay',...
 'DisplayName','Echo',...
 'Label','seconds'))
 end
 methods (Access = protected)
 function out = stepImpl(plugin, in)
 out = zeros(size(in));
 writeIndex = plugin.BufferIndex;
 readIndex = writeIndex - plugin.NSamples;
 if readIndex <= 0
 readIndex = readIndex + 192001;
 end

11 Audio Plugins in MATLAB

11-8

 for i = 1:size(in,1)
 plugin.CircularBuffer(writeIndex,:) = in(i,:);

 echo = plugin.CircularBuffer(readIndex,:);
 out(i,:) = in(i,:) + echo * plugin.Gain;

 writeIndex = writeIndex + 1;
 if writeIndex > 192001
 writeIndex = 1;
 end

 readIndex = readIndex + 1;
 if readIndex > 192001
 readIndex = 1;
 end
 end
 plugin.BufferIndex = writeIndex;
 end
 function resetImpl(plugin)
 plugin.CircularBuffer = zeros(192001,2);
 plugin.NSamples = floor(getSampleRate(plugin) * plugin.Delay);
 end
 end
 methods
 function set.Delay(plugin, val)
 plugin.Delay = val;
 plugin.NSamples = floor(getSampleRate(plugin) * val);
 end
 end
end

Click here to open the file.

Quick Start Basic Plugin
Template
classdef myBasicPlugin < audioPlugin
 % myBasicPlugin is a template basic plugin. Use this template to create
 % your own basic plugin.

 properties
 % Use this section to initialize properties that the end-user interacts
 % with.
 end
 properties (Access = private)
 % Use this section to initialize properties that the end-user does not
 % interact with directly.
 end
 properties (Constant)
 % This section contains instructions to build your audio plugin
 % interface. The end-user uses the interface to adjust tunable
 % parameters. Use audioPluginParameter to associate a public property
 % with a tunable parameter.
 end
 methods
 function out = process(plugin, in)
 % This section contains instructions to process the input audio
 % signal. Use plugin.MyProperty to access a property of your
 % plugin.
 end
 function reset(plugin)
 % This section contains instructions to reset the plugin between
 % uses or if the environment sample rate changes.
 end
 function set.MyProperty(plugin, val)
 % This section contains instructions to execute if the
 % specified property is modified. Properties associated with
 % parameters are updated automatically. Use the set method to
 % execute more complicated instructions.
 end
 end
end

Annotated Example

This basic plugin enables the user to tune a damped applied gain. Click here to open the file.

 Audio Plugins in MATLAB

11-9

Quick Start Basic Source Plugin
Template
classdef myBasicSourcePlugin < audioPluginSource
 % myBasicSourcePlugin is a template for a basic source plugin. Use this
 % template to create your own basic source plugin.

 properties
 % Use this section to initialize properties that the end-user
 % interacts with.
 end
 properties (Access = private)
 % Use this section to initialize properties that the end-user does
 % not interact with directly.
 end
 properties (Constant)
 % This section contains instructions to build your audio plugin
 % interface. The end-user uses the interface to adjust tunable
 % parameters. Use audioPluginParameter to associate a public
 % property with a tunable parameter.
 end
 methods
 function out = process(plugin)
 % This section contains instructions to produce the output
 % audio signal. Use plugin.MyProperty to access a property of
 % your plugin. Use getSamplesPerFrame(plugin) to get the frame
 % size used by the environment.
 end
 function reset(plugin)
 % This section contains instructions to reset the plugin
 % between uses, or when the environment sample rate changes.
 end
 function set.MyProperty(plugin, val)
 % This section contains instructions to execute if the
 % specified property is modified. Properties associated with
 % parameters are updated automatically. Use the set method to
 % execute more complicated instructions.
 end

11 Audio Plugins in MATLAB

11-10

 end
end

Annotated Example

This basic source plugin enables the user to tune the damped gain of a noise signal. Click here to
open the file.

Quick Start System Object Plugin
Template
classdef mySystemObjectPlugin < audioPlugin & matlab.System
 % mySystemObjectPlugin is a template for System object plugins.
 % Use this template to create your own System object plugin.

 properties
 % Use this section to initialize properties that the end-user interacts
 % with.
 end
 properties (Access = private)
 % Use this section to initialize properties that the end-user does not
 % interact with directly.
 end
 properties (Constant)
 % This section contains instructions to build your audio plugin
 % interface. The end-user uses the interface to adjust tunable
 % parameters. Use audioPluginParameter to associate a public property
 % with a tunable parameter.
 end
 methods (Access = protected)
 function out = stepImpl(plugin)
 % This section contains instructions to process the input audio
 % signal. Use plugin.MyProperty to access a property of your
 % plugin.

 Audio Plugins in MATLAB

11-11

 end
 function resetImpl(plugin)
 % This section contains instructions to reset the plugin between
 % uses or if the environment sample rate changes.
 end
 end
 methods
 function set.MyProperty(plugin, val)
 % This section contains instructions to execute if the specified
 % property is modified. Properties associated with parameters are updated
 % automatically. Use the set method to execute more complicated
 % instructions.
 end
 end
end

Annotated Example

This System object plugin enables the user to tune a damped applied gain. Click here to open the file.

Quick Start System Object Source Plugin
Template
classdef mySystemObjectSourcePlugin < audioPluginSource & matlab.System
 % mySystemObjectPlugin is a template for System object source plugins.
 % Use the template to create your own System object source plugin.

 properties
 % Use this section to initialize properties that the end-user
 % interacts with.
 end
 properties (Access = private)
 % Use this section to initialize properties that the end-user does

11 Audio Plugins in MATLAB

11-12

 % not interact with directly.
 end
 properties (Constant)
 % This section contains instructions to build your audio plugin
 % interface. The end-user uses the interface to adjust tunable
 % parameters. Use audioPluginParameter to associate a public
 % property with a tunable parameter.
 end
 methods (Access = protected)
 function out = stepImpl(plugin)
 % This section contains instructions to produce the output
 % audio signal. Use plugin.MyProperty to access a property of
 % your plugin. Use getSamplesPerFrame(plugin) to get the frame
 % size used by the environment.
 end
 function resetImpl(plugin)
 % This section contains instructions to reset the plugin
 % between uses or if the environment sample rate changes.
 end
 end
 methods
 function set.MyProperty(plugin, val)
 % This section contains instructions to execute if the
 % specified property is modified. Properties associated with
 % parameters are updated automatically. Use the set method to
 % execute more complicated instructions.
 end
 end
end

Annotated Example

This System object source plugin enables the user to tune the damped gain of a noise signal. Click
here to open the file.

 Audio Plugins in MATLAB

11-13

Audio Toolbox Extended Terminology
In the MATLAB environment, an audio plugin refers to a class derived from the audioPlugin base
class or the audioPluginSource base class. Audio plugins can also inherit from matlab.System.
Any object that derives from matlab.System is referred to as a System object. Deriving from
matlab.System allows for additional functionality, including Simulink integration. However,
manipulating System objects requires a more advanced understanding of OOP in the MATLAB
environment.

See Also

More About
• “Convert MATLAB Code to an Audio Plugin” on page 13-2
• “Convert Audio Plugin System Objects to Simulink Blocks” on page 14-2
• “What Are DAWs, Audio Plugins, and MIDI Controllers?” on page 9-2
• “Export a MATLAB Plugin to a DAW” on page 7-2

11 Audio Plugins in MATLAB

11-14

Real-Time Audio in Simulink

12

Real-Time Audio in Simulink
In this section...
“Create Model Using Audio Toolbox Simulink Model Templates” on page 12-2
“Add Audio Toolbox Blocks to Model” on page 12-3
“Block Characteristics” on page 12-5

Create Model Using Audio Toolbox Simulink Model Templates
The Audio Toolbox Simulink model templates provide a Simulink environment suitable for audio
signal processing.

To create a model using the Audio Toolbox Simulink model templates:

1 Open the Simulink Start Page by typing simulink at the MATLAB command prompt.

2 Under Audio Toolbox, click the model template you want.

The two Audio Toolbox Simulink model templates are:

• Audio System – Creates a blank model configured with settings recommended for Audio
Toolbox.

• Basic Audio Player – Creates an audio model configured with settings recommended for Audio
Toolbox. This model uses a From Multimedia File block to read multimedia files, and an Audio
Device Writer block to send sound data to the default audio device of your computer. Adjust
the model as needed to model your audio system. For example, to process live audio input,
replace the From Multimedia File block with an Audio Device Reader block.

12 Real-Time Audio in Simulink

12-2

Add Audio Toolbox Blocks to Model
1 Create a model using an Audio Toolbox template.
2 Open the Simulink Library Browser and select Audio Toolbox.

3 The Audio Toolbox Block Library has six categories: Dynamic Range Control, Effects, Filters,
Measurements, Sinks, and Sources. Select a block from one of the categories, and add it to your
model.

4 In this example, a Compressor is added to the model by dragging and dropping from the Dynamic
Range Control category of the Simulink Library Browser.

 Real-Time Audio in Simulink

12-3

5 To run your model, click the button.
6 Open a block parameter user interface by double-clicking the block. You can modify parameters

while the model runs. For example, if you added a Compressor block, you can adjust the
Threshold (dB) dial to compress the dynamic range of your audio signal.

7 Running a model in the Simulink environment does not save the model. Save your model by
clicking the button.

12 Real-Time Audio in Simulink

12-4

Block Characteristics
You can type showaudioblockdatatypetable at the MATLAB command line to generate a table
showing characteristics of Simulink blocks in Audio Toolbox.

See Also

More About
• “Audio Input and Audio Output” on page 2-2
• “Convert Audio Plugin System Objects to Simulink Blocks” on page 14-2

 Real-Time Audio in Simulink

12-5

Convert MATLAB Code to an Audio
Plugin

13

Convert MATLAB Code to an Audio Plugin
Audio Toolbox supports several approaches for the development of audio processing algorithms. Two
common approaches include procedural programming using MATLAB scripts and object-oriented
programming using MATLAB classes. The audio plugin class is the suggested paradigm for
developing your audio processing algorithm in Audio Toolbox. See “Audio Plugins in MATLAB” on
page 11-2 for a tutorial on the structure, benefits, and uses of audio plugins.

This tutorial presents an existing algorithm developed as a MATLAB script, and then walks through
the steps to convert the script to an audio plugin class. Use this tutorial to understand the
relationship between procedural programming and object-oriented programming. You can also use
this tutorial as a template to convert any audio processing you developed as MATLAB scripts to the
audio plugin paradigm.

Inspect Existing MATLAB Script
The MATLAB script has these sections:

A Variable Initialization. Variables are initialized with known values, including the number of
samples per frame (frameSize) for frame-based stream processing.

B Object Construction.

• Two audioOscillator System objects –– Construct to create time-varying gain control
signals.

• dsp.AudioFileReader System object –– Construct to read an audio signal from a file.
• audioDeviceWriter System object –– Construct to write an audio signal to your default

audio device.
C Audio Stream Loop. Mixes stereo channels into a mono signal. The mono signal is used to

create a new stereo signal. Each channel of the new stereo signal oscillates in applied gain
between 0 and 2, with a respective 90-degree phase shift.

View Code

Click here to open this example.

%% Section A: Variable Initialization

% Specify frequency of gain oscillation.
Frequency = 1;

% Determine sample rate of audio file (input audio signal).
fileInfo = audioinfo(...
 'RockGuitar-16-44p1-stereo-72secs.wav');
sampleRate = fileInfo.SampleRate;

% Specify size of frame to read in from audio file.
frameSize = 256;

%% Section B: Object Construction

Sine = audioOscillator(...
 'DCOffset',1,...
 'SamplesPerFrame',frameSize,...

13 Convert MATLAB Code to an Audio Plugin

13-2

 'Frequency',Frequency,...
 'SampleRate',sampleRate);

Cosine = audioOscillator(...
 'DCOffset',1,...
 'PhaseOffset',0.5,...
 'Frequency',Frequency,...
 'SamplesPerFrame',frameSize,...
 'SampleRate',sampleRate);

fileReader = dsp.AudioFileReader(...
 'Filename',fileInfo.Filename,...
 'SamplesPerFrame',frameSize);

deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

%% Section C: Audio Stream Loop

while ~isDone(fileReader)

 % Read in one frame of audio signal from file.
 in = fileReader();

 % Mix stereo input to mono.
 mono = 0.5*sum(in,2);

 % Get current frame of Sine and Cosine gain functions.
 gainLeft = Sine();
 gainRight = Cosine();

 % Process signal by multiplying by variable gain matrix.
 out = [mono,mono] .* [gainLeft,gainRight];

 % Write one frame of audio signal to device.
 deviceWriter(out);

end

Convert MATLAB Script to Plugin Class
This tutorial converts a MATLAB script to an audio plugin class in six steps. You begin by creating a
skeleton of a basic audio plugin class, and then map sections of the MATLAB script to the audio
plugin class.

 Convert MATLAB Code to an Audio Plugin

13-3

For an overview of how a MATLAB script is converted to a plugin class, inspect the script to plugin
visual mapping. To perform this conversion, walk through the example for explanations and step-by-
step instructions.

1. Create Skeleton of Audio Plugin Class

Begin with the basic skeleton of an audio plugin class. This skeleton is not the minimum required, but
a common minimum to create an interesting audio plugin. See “Audio Plugins in MATLAB” on page
11-2 for the minimum requirements to create a basic audio plugin.

View Code
classdef gainOscillator < audioPlugin
 % gainOscillator Phase-shifted stereo gain oscillation.
 % The process method mixes stereo channels into a mono signal. The
 % mono signal is used to create a stereo signal, with each channel
 % oscillating in gain between zero and two, with a respective 90
 % degree phase shift.

 properties
 % Use this section to initialize properties that the end-user
 % interacts with.
 end

13 Convert MATLAB Code to an Audio Plugin

13-4

 properties (Access = private)
 % Use this section to initialize properties that the end-user does
 % not interact with directly.
 end
 properties (Constant)
 % This section contains instructions to build your audio plugin
 % interface. The end-user uses the interface to adjust tunable
 % parameters. Use audioPluginParameter to associate a public
 % property with a tunable parameter.
 end
 methods
 function out = process(plugin, in)
 % This section contains instructions to process the input audio
 % signal. Use plugin.MyProperty to access a property of your
 % plugin.
 end
 function reset(plugin)
 % This section contains instructions to reset the plugin
 % between uses or if the environment sample rate changes.
 end
 end
end

2. Map Script Variable Initialization to Plugin Properties

Properties allow a plugin to store information across sections of the plugin class definition. If a
property has access set to private, the property is not accessible to the end user of a plugin. Variable
initialization in a script maps to plugin properties.

• A valid plugin must allow input to the process method to have a variable frame size. Frame size
is determined for each input frame in the process method of the plugin. Because frame size is
used only in the process method, you do not declare it in the properties section.

• A valid audio plugin must allow input to the process method to have a variable sample rate. The
reset method of a plugin is called when the environment changes the sample rate. Determine the
sample rate in the reset method using the getSampleRate method inherited from the
audioPlugin base class.

• The objects used by a plugin must be declared as properties to be used in multiple sections of the
plugin. However, the constructor method of a plugin performs object construction.

View Code
classdef gainOscillator < audioPlugin
 properties
 Frequency = 1; %<---
 end
 properties(Access = private)
 Sine %<---
 Cosine %<---
 end
 properties (Constant)
 end
 methods
 function out = process(plugin,in)
 end
 function reset(plugin)
 end
 end
end

3. Map Script Object Construction to Plugin Constructor Method

Add a constructor method to the methods section of your audio plugin. The constructor method of a
plugin has the form:

 Convert MATLAB Code to an Audio Plugin

13-5

function plugin = myPluginClassName
 % Instructions to construct plugin object.
end

If your plugin uses objects, construct them when the plugin is constructed. Set nontunable properties
of objects used by your plugin during construction.

In this example, you construct the Sine and Cosine objects in the constructor method of the plugin.

View Code
classdef gainOscillator < audioPlugin
 properties
 Frequency = 1;
 end
 properties(Access = private)
 Sine
 Cosine
 end
 properties (Constant)
 end
 methods
 function plugin = gainOscillator %<---
 plugin.Sine = audioOscillator(... %<---
 'DCOffset',1); %<---
 plugin.Cosine = audioOscillator(... %<---
 'DCOffset',1,... %<---
 'PhaseOffset',0.5); %<---
 end %<---
 function out = process(plugin,in)
 end
 function reset(plugin)
 end
 end
end

4. Add Reset Method

The reset method of a plugin is called every time a new session is started with the plugin, or when
the environment changes sample rate. Use the reset method to update the SampleRate property of
your Sine and Cosine objects. To query the sample rate, use the getSampleRate base class
method.

View Code
classdef gainOscillator < audioPlugin
 properties
 Frequency = 1;
 end
 properties(Access = private)
 Sine
 Cosine
 end
 properties (Constant)
 end
 methods
 function plugin = gainOscillator
 plugin.Sine = audioOscillator(...

13 Convert MATLAB Code to an Audio Plugin

13-6

 'DCOffset',1);
 plugin.Cosine = audioOscillator(...
 'DCOffset',1,...
 'PhaseOffset',0.5);
 end
 function out = process(plugin,in)
 end
 function reset(plugin)
 plugin.Sine.SampleRate = getSampleRate(plugin); %<---
 plugin.Cosine.SampleRate = getSampleRate(plugin); %<---
 end
 end
end

5. Map Script Audio Stream Loop to Plugin Process Method

The contents of the audio stream loop in a script maps to the process method of an audio plugin,
with these differences:

• A valid audio plugin must accept a variable frame size, so frame size is calculated for every call to
the process method. Because frame size is variable, any processing that relies on frame size
must update when input frame size changes.

• The environment handles the input and output to the process method.

View Code

classdef gainOscillator < audioPlugin
 properties
 Frequency = 1;
 end
 properties(Access = private)
 Sine
 Cosine
 end
 properties (Constant)
 end
 methods
 function plugin = gainOscillator
 plugin.Sine = audioOscillator(...
 'DCOffset',1);
 plugin.Cosine = audioOscillator(...
 'DCOffset',1,...
 'PhaseOffset',0.5);
 end
 function out = process(plugin,in)
 frameSize = size(in,1); %<---

 plugin.Sine.SamplesPerFrame = frameSize; %<---
 plugin.Cosine.SamplesPerFrame = frameSize; %<---

 mono = 0.5*sum(in,2); %<---
 gainLeft = step(plugin.sine); %<---
 gainRight = step(plugin.cosine); %<---
 out = [mono,mono].*[gainLeft,gainRight]; %<---
 end
 function reset(plugin)
 plugin.Sine.SampleRate = getSampleRate(plugin);

 Convert MATLAB Code to an Audio Plugin

13-7

 plugin.Cosine.SampleRate = getSampleRate(plugin);
 end
 end
end

6. Add Plugin Interface

The plugin interface lets users view the plugin and tune its properties. Specify PluginInterface as
an audioPluginInterface object that contains an audioPluginParameter object. The first
argument of audioPluginParameter is the property you want to synchronize with a tunable
parameter. Choose the display name, label the units, and set the parameter range. This example uses
0.1 to 10 as a reasonable range for the Frequency property. Write code so that during each call to
the process method, your Sine and Cosine objects are updated with the current frequency value.

View Code

classdef gainOscillator < audioPlugin
 properties
 Frequency = 1;
 end
 properties(Access = private)
 Sine
 Cosine
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(... %<---
 audioPluginParameter('Frequency',... %<---
 'DisplayName','Oscillation Frequency',... %<---
 'Label','Hz',... %<---
 'Mapping',{'lin',0.01,10})) %<---
 end
 methods
 function plugin = gainOscillator
 plugin.Sine = audioOscillator(...
 'DCOffset',1);
 plugin.Cosine = audioOscillator(...
 'DCOffset',1,...
 'PhaseOffset',0.5);
 end
 function out = process(plugin,in)
 frameSize = size(in,1);

 plugin.Sine.Frequency = plugin.Frequency; %<---
 plugin.Cosine.Frequency = plugin.Frequency; %<---

 plugin.Sine.SamplesPerFrame = frameSize;
 plugin.Cosine.SamplesPerFrame = frameSize;

 mono = 0.5*sum(in,2);
 gainLeft = step(plugin.Sine);
 gainRight = step(plugin.Cosine);
 out = [mono,mono].*[gainLeft,gainRight];
 end
 function reset(plugin)
 plugin.Sine.SampleRate = getSampleRate(plugin);
 plugin.Cosine.SampleRate = getSampleRate(plugin);
 end

13 Convert MATLAB Code to an Audio Plugin

13-8

 end
end

Click here to open the completed plugin example.

Once your audio plugin class definition is complete:

1 Save your plugin class definition file.
2 Validate your plugin using validateAudioPlugin.
3 Prototype it using Audio Test Bench.
4 Generate is using generateAudioPlugin.

See Also

More About
• “Real-Time Audio in MATLAB” on page 10-2
• “What Are DAWs, Audio Plugins, and MIDI Controllers?” on page 9-2
• “Audio Plugins in MATLAB” on page 11-2
• “Convert Audio Plugin System Objects to Simulink Blocks” on page 14-2
• “Export a MATLAB Plugin to a DAW” on page 7-2

 Convert MATLAB Code to an Audio Plugin

13-9

Convert Audio Plugin System Objects to
Simulink Blocks

14

Convert Audio Plugin System Objects to Simulink Blocks
You can convert System object audio plugins to blocks for real-time parameter tuning in Simulink.
Use this workflow to convert your own System object plugins to Simulink blocks, or to convert any of
the System object plugins found in the “Audio Plugin Example Gallery”.

Open the Basic Audio Player Template in Simulink
On the Simulink Start Page, under Audio Toolbox, click Basic Audio Player. See “Real-Time Audio in
Simulink” on page 12-2 for a tutorial on using Simulink model templates.

Import Audio Plugin Functionality
To import System object plugins into Simulink, use the MATLAB System block. This block is
compatible with System object plugins but not basic plugins. See “Audio Plugins in MATLAB” on page
11-2 for more information about defining plugins in MATLAB.

1 Add the System object plugin used in this example to the MATLAB path. At the command prompt,
enter:

addpath(fullfile(matlabroot,'examples','audio','main'))

2 From the Simulink / User-Defined Functions library, drag a MATLAB System block to your model.
3 In the MATLAB System block, enter the name of your System object: SoundPosition

14 Convert Audio Plugin System Objects to Simulink Blocks

14-2

The SoundPosition audio plugin enables you to tune two parameters: stereo width, and panning.

Create an Audio Plugin Block Interface
When you import a plugin into a Simulink model, the plugin parameters are set to the initial values
defined in the properties section of the plugin class. To use dials for tunable parameters, create a
custom interface by using a block mask. See “Masking Fundamentals” (Simulink) for more
information.

1 Open the SoundPosition block.

a Set Width to the variable W.
b Set Pan to the variable P.

c Click OK.
2 Make your SoundPosition block a subsystem. Select the SoundPosition block then, in the

Modeling tab, select Create Subsystem.

3 Add a mask to your Subsystem block. In the Subsystem Block tab, select Create Mask.
4 In the Mask Editor, click the Parameters & Dialog tab.
5 Add a dial to the dialog box for controlling stereo width. From the Controls pane, drag a Dial to

the Dialog box pane. Then, in the Property editor pane, set these properties:

• Name –– W
• Value –– 2
• Prompt –– Stereo width
• Type –– dial
• Minimum –– 0
• Maximum –– 4

 Convert Audio Plugin System Objects to Simulink Blocks

14-3

6 To control the panning, add another dial to the dialog box. From the Controls pane, drag a Dial
to the Dialog box pane. Then, in the Property editor pane, set these properties:

• Name –– P
• Value –– 0
• Prompt –– Pan
• Type –– dial
• Minimum –– -1
• Maximum –– 1

7 Click OK.

14 Convert Audio Plugin System Objects to Simulink Blocks

14-4

Run the Model
1 Open the From Multimedia File block.

a To modify the frame size used in your model, set Samples per audio channel to 256.
b To hear the effect of the stereo widening, specify an audio file with a distinct stereo field

recording. Set File name to FunkyDrums-44p1-stereo-25secs.mp3.
c Click OK.

2 To open the parameter controls of your SoundPosition block, double-click the Subsystem block.

3 Run your model. To hear the effect of your audio plugin, open the Subsystem block and modify
the Stereo width and Pan parameters in real time.

Open the completed model.

After you complete this tutorial, it is a best practice to undo the modification to the MATLAB path. At
the command prompt, enter:

rmpath(fullfile(matlabroot,'examples','audio','main'))

See Also

More About
• “Audio Plugins in MATLAB” on page 11-2

 Convert Audio Plugin System Objects to Simulink Blocks

14-5

• “Audio Plugin Example Gallery”
• “Real-Time Audio in Simulink” on page 12-2

14 Convert Audio Plugin System Objects to Simulink Blocks

14-6

Host External Audio Plugins

15

Host External Audio Plugins
You can host VST, VST3, and AU plugins in MATLAB by using the loadAudioPlugin function from
Audio Toolbox.

After you load an external audio plugin, you process audio through its main audio-processing
algorithm.

Audio Toolbox enables three ways to interact with the hosted audio plugin:

• “Property Display Mode (Default)” on page 15-3
• “Parameter Display Mode” on page 15-7
• “Graphical Interaction” on page 15-12

The following tutorials–one version for property display mode and one version for parameter display
mode–walk you through the process of hosting an externally authored VST plugin and interacting
with the plugin at the MATLAB command line. You host a plugin from the suite of ReaPlugs VST
plugins distributed by Cockos Incorporated. To download the ReaPlugs VST FX Suite for your system,
follow the instructions on the REAPER website. A 64-bit Windows platform is used in this tutorial. The
loadAudioPlugin function cannot load 32-bit plugins.

15 Host External Audio Plugins

15-2

https://www.reaper.fm/reaplugs/

Property Display Mode (Default)
Setting the display mode to property enables you to interact with the hosted plugin object using
standard dot notation. For example:

hostedObject.Gain = 5; % dB

Property is the default display mode of hosted plugins.

Numeric parameters are mapped through a heuristic interpretation of the normalized parameter
values and the corresponding display values. The property display mode is simple and intuitive.
However, due to the “Heuristic Mapping” on page 15-12 of normalized parameter values to real-
world property values, the property display mode may break down for some plugins. In this case, you
should use the parameter display mode.

Host External Audio Plugin Tutorial (Property Display Mode)

The following tutorial walks through the steps of loading and configuring an external audio plugin in
property display mode.

1. Load External Audio Plugin

Use the loadAudioPlugin function to host the ReaDelay VST plugin. If the plugin is in your
current folder, you can specify just the file name. Otherwise, you must specify the full path. In this
example, the plugin is in the current folder. By default, the display mode is set to property.

hostedPlugin = loadAudioPlugin('readelay-standalone.dll')

hostedPlugin =
 VST plugin 'ReaDelay (ReaPlugs Edition)' 2 in, 2 out

 Wet: 0 dB
 Dry: 0 dB
 x1_Enabled: 'ON'
 x1_Length_4: 0 ms
 x1_Length_5: 4 8N
 x1_Feedback: -Inf dB
 x1_Lowpass: 20000 Hz

 Host External Audio Plugins

15-3

 x1_Hipass: 0 Hz
 x1_Resolution: 24 bits
 x1_StereoWidth: 1
 x1_Volume: 0 dB
 x1_Pan: 0 %

The first line displays the plugin type, plugin display name, and the number of input and output
channels for the main audio-processing algorithm of the plugin. If you are hosting a source plugin,
the number of output channels and the default samples per frame are displayed.

By default, all properties are displayed.

2. Tune Hosted Plugin Property Values

You can interact with the properties of the hosted plugin using dot notation. If you go above or below
the allowed range of the property, an error message will state the valid boundaries.

hostedPlugin.x1_Hipass = 120;
highPassSetting = hostedPlugin.x1_Hipass

highPassSetting = 120

You can use tab-completion to get a list of possible values for enumerated properties.

3. Use Hosted Plugin to Process Audio

To process an audio signal with the hosted plugin, use process.

audioIn = [1,1];
audioOut = process(hostedPlugin,audioIn);

Audio plugins are designed for variable-frame-based processing, meaning that you can call process
with successive audio input frames of different lengths. The hosted plugin saves the internal states
required for continuous processing. To process an audio signal read from a file and then written to
your audio output device, place your hosted plugin in an audio stream loop. Use
dsp.AudioFileWriter and audioDeviceWriter objects as the input and output to your audio
stream loop, respectively. Set the sample rate of the hosted plugin to the sample rate of the audio file
by using setSampleRate.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
sampleRate = fileReader.SampleRate;

deviceWriter = audioDeviceWriter('SampleRate',sampleRate);
setSampleRate(hostedPlugin,sampleRate);

while ~isDone(fileReader)
 audioIn = fileReader();

 % The hosted plugin requires a stereo input.
 stereoAudioIn = [audioIn,audioIn];

15 Host External Audio Plugins

15-4

 x = process(hostedPlugin,stereoAudioIn);

 deviceWriter(x);
end

release(fileReader)
release(deviceWriter)

You can modify properties in the audio stream loop. To control the Wet property of your plugin in an
audio stream loop, create an audioOscillator System object™. Use the fileReader,
deviceWriter, and hostedPlugin objects you created previously to process the audio.

osc = audioOscillator('sine', ...
 'Frequency',10, ...
 'Amplitude',20, ...
 'DCOffset',-20, ...
 'SamplesPerFrame',fileReader.SamplesPerFrame, ...
 'SampleRate',sampleRate);

while ~isDone(fileReader)
 audioIn = fileReader();

 controlSignal = osc();
 hostedPlugin.Wet = controlSignal(1);

 stereoAudioIn = [audioIn,audioIn];
 x = process(hostedPlugin,stereoAudioIn);
 deviceWriter(x);
end

release(fileReader)
release(deviceWriter)

4. Analyze Hosted Plugin

You can use the Audio Toolbox measurement and visualization tools to display behavior information
about your hosted plugin. To display the input and output of your hosted audio plugin, create a time
scope. Create a loudnessMeter object and use the 'EBU Mode' visualization to monitor loudness
output by the hosted plugin. Use the fileReader, deviceWriter, osc, and hostedPlugin objects
you created previously to process the audio.

scope = timescope('SampleRate',sampleRate, ...
 'TimeSpanSource','property', ...
 'TimeSpanOverrunAction','scroll', ...
 'TimeSpan',5, ...
 'BufferLength',5*2*sampleRate, ...
 'YLimits',[-1 1]);

loudMtr = loudnessMeter('SampleRate',sampleRate);
visualize(loudMtr)

while ~isDone(fileReader)
 audioIn = fileReader();

 controlSignal = osc();
 hostedPlugin.Wet = controlSignal(1);

 stereoAudioIn = [audioIn,audioIn];

 Host External Audio Plugins

15-5

 x = process(hostedPlugin,stereoAudioIn);

 loudMtr(x);
 scope([x(:,1),audioIn(:,1)])

 deviceWriter(x);
end

15 Host External Audio Plugins

15-6

release(fileReader)
release(deviceWriter)

Parameter Display Mode
Setting the display mode to parameter enables you to interact with the hosted plugin in the most
basic way possible: by setting and getting normalized parameter values. You can use the information
optionally returned by getParameter to interpret normalized values as real-world values, such as
decibels and Hertz.

Host External Audio Plugin Tutorial (Parameter Mode)

The following tutorial walks through the steps of loading and configuring an external audio plugin in
parameter display mode.

1. Load External Audio Plugin

Use the loadAudioPlugin function to host the ReaDelay VST plugin. If the plugin is in your
current folder, you can specify just the file name. Otherwise, you must specify the full path. In this
example, the plugin is in the current folder.

hostedPlugin = loadAudioPlugin('readelay-standalone.dll');

By default, the display mode is set to property. Set the DisplayMode property to Parameters for
low-level interaction with the hosted plugin.

hostedPlugin.DisplayMode = 'Parameters'

hostedPlugin =
 VST plugin 'ReaDelay (ReaPlugs Edition)' 2 in, 2 out

 Parameter Value Display

 1 Wet: 1.0000 +0.0 dB
 2 Dry: 1.0000 +0.0 dB
 3 1: Enabled: 1.0000 ON
 4 1: Length: 0.0000 0.0 ms
 5 1: Length: 0.0156 4.00 8N
 7 parameters not displayed. See all 12 params.

 Host External Audio Plugins

15-7

The first line displays the plugin type, plugin display name, and the number of input and output
channels for the main audio processing algorithm of the plugin. If you are hosting a source plugin,
the number of output channels and the default samples per frame are displayed.

By default, only the first five parameters are displayed. To display all parameters of the hosted plugin,
click See all 12 params.

The table provides the parameter index, parameter name, normalized parameter value, displayed
parameter value, and the displayed parameter value label.

The normalized parameter value is always in the range [0,1] and generally corresponds to the
position of a user interface (UI) widget in a DAW or the position of a MIDI control on a MIDI control
surface. The parameter display value is related to the normalized parameter value by an unknown
mapping internal to the plugin and typically reflects the value used internally by the plugin for
processing.

2. Set and Get Hosted Plugin Parameter Values

You can use getParameter and setParameter to interact with the parameters of the hosted plugin.
Using getParameter and setParameter is the programmatic equivalent of moving widgets in a UI
or controls on a MIDI control surface. A typical DAW UI provides the parameter name, a visual
representation of the normalized parameter value, the displayed parameter value, and the displayed
parameter value label.

15 Host External Audio Plugins

15-8

For example, the Wet parameter of readelay-standalone.dll has a normalized parameter value
of 1 and a display parameter value of +0.0. The Wet parameter might be displayed in a DAW as
follows:

With Audio Toolbox, you can use getParameter to return the normalized parameter value and
additional information about a single hosted plugin parameter. You can specify which parameter to
get by the parameter index.

parameterIndex = 1;
[normParamValue,paramInfo] = getParameter(hostedPlugin,parameterIndex)

normParamValue = 1

paramInfo = struct with fields:
 DisplayName: 'Wet'
 DisplayValue: '+0.0'
 Label: 'dB'

You can use setParameter to set a normalized parameter value of your hosted plugin. You can
specify which parameter to set by its parameter index.

normParamValue = 0.5;
setParameter(hostedPlugin,parameterIndex,normParamValue)

Setting the normalized parameter value to 0.5 is equivalent to setting the indicator to the center of a
slider in a DAW.

To verify the new normalized parameter value for Wet, use getParameter.

parameterIndex = 1;
[normParamValue,paramInfo] = getParameter(hostedPlugin,parameterIndex);

The DisplayValue for the Wet parameter updates from +0.0 to -6.0 because you set the
corresponding normalized parameter value. The relationship between the displayed value and the
normalized value is determined by an unknown mapping that is internal to the hosted plugin.

 Host External Audio Plugins

15-9

3. Use Hosted Plugin to Process Audio

To process an audio signal with the hosted plugin, use process.

audioIn = [1,1];
audioOut = process(hostedPlugin,audioIn);

Audio plugins are designed for variable-frame-based processing, meaning that you can call process
with successive audio input frames of different lengths. The hosted plugin saves the internal states
required for continuous processing. To process an audio signal read from a file and then written to
your audio output device, place your hosted plugin in an audio stream loop. Use
dsp.AudioFileReader and audioDeviceWriter objects as the input and output to your audio
stream loop, respectively. Set the sample rate of the hosted plugin to the sample rate of the audio file
by using setSampleRate.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
sampleRate = fileReader.SampleRate;

deviceWriter = audioDeviceWriter('SampleRate',sampleRate);
setSampleRate(hostedPlugin,sampleRate);

while ~isDone(fileReader)
 audioIn = fileReader();

 % The hosted plugin requires a stereo input.
 stereoAudioIn = [audioIn,audioIn];

 x = process(hostedPlugin,stereoAudioIn);

 deviceWriter(x);
end

release(fileReader)
release(deviceWriter)

You can modify parameters in the audio stream loop. To control the Wet parameter of your plugin in
an audio stream loop, create an audioOscillator System object™. Use the fileReader,
deviceWriter, and hostedPlugin objects you created previously to process the audio.

osc = audioOscillator('sine', ...
 'Frequency',10, ...
 'Amplitude',0.5, ...
 'DCOffset',0.5, ...
 'SamplesPerFrame',fileReader.SamplesPerFrame, ...
 'SampleRate',sampleRate);

while ~isDone(fileReader)
 audioIn = fileReader();

 controlSignal = osc();
 setParameter(hostedPlugin,1,controlSignal(1));

 stereoAudioIn = [audioIn,audioIn];
 x = process(hostedPlugin,stereoAudioIn);
 deviceWriter(x);
end

15 Host External Audio Plugins

15-10

release(fileReader)
release(deviceWriter)

4. Analyze Hosted Plugin

You can use the Audio Toolbox measurement and visualization tools to display behavior information
about your hosted plugin. To display the input and output of your hosted audio plugin, create a time
scope. Create a loudnessMeter object and use the 'EBU Mode' visualization to monitor loudness
output by the hosted plugin. Use the fileReader, deviceWriter, osc, and hostedPlugin objects
you created previously to process the audio.

scope = timescope('SampleRate',sampleRate, ...
 'TimeSpanSource','property', ...
 'TimeSpanOverrunAction','scroll', ...
 'TimeSpan',5, ...
 'BufferLength',5*2*sampleRate, ...
 'YLimits',[-1 1]);

loudMtr = loudnessMeter('SampleRate',sampleRate);
visualize(loudMtr)

while ~isDone(fileReader)
 audioIn = fileReader();

 controlSignal = osc();
 setParameter(hostedPlugin,1,controlSignal(1));

 stereoAudioIn = [audioIn,audioIn];
 x = process(hostedPlugin,stereoAudioIn);

 loudMtr(x);
 scope([x(:,1),audioIn(:,1)])

 deviceWriter(x);
end

 Host External Audio Plugins

15-11

release(fileReader)
release(deviceWriter)

Graphical Interaction
You can also interact with an externally authored audio plugin graphically using the Audio Test
Bench. The Audio Test Bench mimics the default graphical user interface common to most digital
audio workstations.

Heuristic Mapping
Investigate Parameter/Property Mapping

Parameter display values are related to normalized parameter values by unknown mapping rules
internal to the plugin. You can investigate the relationship between the normalized parameter values
and the displayed values by creating a sweeping function. You can use the sweeping function to map
parameter values to their displayed output.

The properties display mode of hosted plugins uses a similar approach to enable you to interact
directly with the real-world (displayed) values, instead of the normalized parameter values.

Save the displayParameterMapping function in your current folder. This function performs a
simplified version of the parameter sweeping used to create the property display mode for hosted
plugins.

15 Host External Audio Plugins

15-12

function displayParameterMapping(hPlugin,prmIndx)
x = 0:0.001:1; % Normalized parameter range

[~,prmInfo] = getParameter(hPlugin,prmIndx);
if isnan(str2double(prmInfo.DisplayValue))
 % Non-Numeric Displays - prints normalized parameter range associated
 % with string
 setParameter(hPlugin,prmIndx,0);
 [~,prmInfo] = getParameter(hPlugin,prmIndx);
 txtOld = prmInfo.DisplayValue;
 oldIndx = 1;

 for i = 2:numel(x)
 setParameter(hPlugin,prmIndx,x(i))
 [~,prmInfo] = getParameter(hPlugin,prmIndx);
 txtNew = prmInfo.DisplayValue;
 if ~strcmp(txtNew,txtOld)
 fprintf('%s: %g - %g\n',txtOld, x(oldIndx),x(i-1));
 oldIndx = i;
 txtOld = txtNew;
 end
 end
 fprintf('%s: %g - %g\n',txtOld, x(oldIndx),x(i));
else
 % Numeric Displays - plots normalized parameter value against displayed
 % parameter value
 y = zeros(numel(x),1);
 for i = 1:numel(x)
 setParameter(hPlugin,prmIndx,x(i))
 [~,prmInfo] = getParameter(hPlugin,prmIndx);
 y(i) = str2double(prmInfo.DisplayValue);
 end
 if any(isnan(y))
 warning('NaN detected in numeric display.')
 end
 plot(x,y)
 xlabel('Normalized Parameter Value')
 ylabel(['Displayed Parameter Value (',prmInfo.Label,')'])
 title(prmInfo.DisplayName)
end

end

Load the readelay-standalone.dll plugin into MATLAB®. Call the
displayParameterMapping function with the hosted plugin and a parameter index.

hostedPlugin = loadAudioPlugin('readelay-standalone.dll');
displayParameterMapping(hostedPlugin,1);

 Host External Audio Plugins

15-13

If you use the displayParameterMapping function with a nonnumeric parameter, the relationship
displays in the Command Window:

displayParameterMapping(hostedPlugin,3)

OFF: 0 - 0.499
ON: 0.5 - 1

See Also
Functions
loadAudioPlugin

Classes
externalAudioPlugin | externalAudioPluginSource

More About
• “What Are DAWs, Audio Plugins, and MIDI Controllers?” on page 9-2
• “Audio Plugins in MATLAB” on page 11-2

15 Host External Audio Plugins

15-14

	Introduction
	Audio Toolbox Product Description
	Acknowledgements

	Audio IO
	Audio Input and Audio Output

	Audio Plugins
	Design an Audio Plugin

	Deep Learning
	Classify Sound Using Deep Learning

	Intro to Audio Deep Learning
	Introduction to Deep Learning for Audio Applications
	Access and Create Data
	Preprocess and Explore Data
	Example Applications and Workflows

	Stream Audio
	Process and Analyze Streaming Audio

	Export a MATLAB Plugin to a DAW
	Export a MATLAB Plugin to a DAW
	Plugin Development Workflow
	Considerations When Generating Audio Plugins
	How Audio Plugins Interact with the DAW Environment

	Audio I/O: Buffering, Latency, and Throughput
	Audio I/O: Buffering, Latency, and Throughput
	Input Audio Stream
	Output Audio Stream
	Synchronize Audio to and from Device
	Terminology and Techniques to Optimize Performance

	What Are DAWs, Audio Plugins, and MIDI Controllers?
	What Are DAWs, Audio Plugins, and MIDI Controllers?
	Digital Audio Workstation (DAW)
	Audio Plugins
	Musical Instrument Digital Interface (MIDI)

	Real-Time Audio in MATLAB
	Real-Time Audio in MATLAB
	Create a Development Test Bench
	Add Tunability
	Quick Start Examples

	Audio Plugins in MATLAB
	Audio Plugins in MATLAB
	Role of Audio Plugins in Audio Toolbox
	Defining Audio Plugins in the MATLAB Environment
	Design a Basic Plugin
	Design a System Object Plugin
	Quick Start Basic Plugin
	Quick Start Basic Source Plugin
	Quick Start System Object Plugin
	Quick Start System Object Source Plugin
	Audio Toolbox Extended Terminology

	Real-Time Audio in Simulink
	Real-Time Audio in Simulink
	Create Model Using Audio Toolbox Simulink Model Templates
	Add Audio Toolbox Blocks to Model
	Block Characteristics

	Convert MATLAB Code to an Audio Plugin
	Convert MATLAB Code to an Audio Plugin
	Inspect Existing MATLAB Script
	Convert MATLAB Script to Plugin Class

	Convert Audio Plugin System Objects to Simulink Blocks
	Convert Audio Plugin System Objects to Simulink Blocks
	Open the Basic Audio Player Template in Simulink
	Import Audio Plugin Functionality
	Create an Audio Plugin Block Interface
	Run the Model

	Host External Audio Plugins
	Host External Audio Plugins
	Property Display Mode (Default)
	Parameter Display Mode
	Graphical Interaction
	Heuristic Mapping

